Tautomers in InChl

Marc C. Nicklaus

NIH InChi Workshop, March 22-24, 2021

IUPAC Project #2012-023-2-800 "Redesign of Handling of Tautomerism for InChI V2" https://iupac.org/project/2012-023-2-800

CADD Group

Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health

U.S. DEPARTMEN'
OF HEALTH AND
HUMAN SERVICES
National Institutes

Tautomerism

Tautomers are isomers that can readily transform into each other through chemical equilibrium reactions

- Prototropic tautomerism:

intramolecular movement of a hydrogen atom

- Valence tautomerism:

rearrangement of bonds w/o migration of atoms

azide form

tetrazole form

- Ring-chain tautomerism:

movement of the proton accompanied by opening/closing of a ring

How does current InChI handle tautomerism?

- InChI is in principle designed to be tautomer-invariant
- Standard InChI handles a limited range of tautomerism types
- One can turn on additional tautomeric types in non-standard InChl via options: KET, 15T
- It was recognized early on that important types of tautomerism are missing

Why new version

Another breaking change:

Add 1,4-oxime/nitroso tautomerism

InChI=1S/C5H5NO2/c7-5-3-1-2-4-6(5)8/h1-4,7H

InChI=1S/C5H5NO2/c7-5-3-1-2-4-6(5)8/h1-4,8H

InChI[Key] only Partially Recapitulates a More Complete Set of Rules

InChI Calculation Type >		Standard	{DONOTADDH W0}		
	Database	Tautomeric	InChl Success	Strict InChl	
Database	Size	Part	Rate (%)	Success Rate (%)	Rules applied in chemoinformatics
CSD ChEMBL	319,201 1,820,035	203,108 1,578,290	26.25 62.15	13.46 28.55	toolkit CACTVS
AMS	8,409,644	7,204,965	64.77	29.85	
PUBCHEM	96,502,282	78,807,315	56.64	29.47	
CSDB	141,743,903	127,543,398	71.27	31.90	Devendra Dhaked
InChI Calculation Type >		Non-standard	{DONOTADDI	H WO RECMET NEW	/PS SPXYZ SAsXYZ Fb Fnud KET 15T}
	Database	Tautomeric	InChl Success	Strict InChl	

InChI Calculation Type >		Non-standard	{DONOTADDH W0 RECMET NEWPS SPXYZ SASXYZ Fb Fnud KET 15T}		
	Database	Tautomeric	InChl Success	Strict InChl	
Database	Size	Part	Rate (%)	Success Rate (%)	
CSD	319,201	203,108	48.83	30.90	Dhaked D. <i>et al.</i> , J. Chem. Inf. Model. 2020 , 60, 3, 1253–1275
ChEMBL	1,820,035	1,578,290	73.91	37.46	
AMS	8,409,644	7,204,965	71.99	36.32	
PUBCHEM	96,502,282	78,807,315	66.52	38.26	
CSDB	141,743,903	127,543,398	78.70	38.97	

InChI Success Rate: At least two rule-enumerated tautomers have same InChIKey

Strict InChI Success Rate: **All** ruleenumerated tautomers have same InChIKey

(1) Guasch L. *et al.*, J. Chem. Inf. Model. **2014**, 54, 2423–2432 Dhaked D. *et al.*, J. Chem. Inf. Model. **2020**, 60, 3, 1090–1100 Dhaked D. *et al.*, J. Chem. Inf. Model. **2020**, 60, 3, 1253–1275 Total number of rules: 90

Tautomer Enumeration Tool

https://cactus.nci.nih.gov/tautomerizer/

NCI/CADD Group

Tautomerizer - Predict tautomers based on 80+ rules

Introduction | Form | Individual Rule Pages | Rules Sources | Help

Enter the structure in SMILES format

1. Input Structure SMILES: Structure Editor Submit 2. Single step or Multi step: O Single step ○ Multi step Activate rules: O Activate all rules O Activate standard rules O Activate only new rules O Enter your own rule as SMIRKS: Hitesh Patel Activate custom rule set via following checkboxes: Select rules-□ PT 02 00 - 1,5 (thio)keto/(thio)enol -[O,S,Se,Te;X1:1]=[Cz1H0:2][C:5]=[C:6][CX4z0,NX3:3][#1:4]>>[#1:4][O,S,Se,Te;X2:1][Cz1:2]=[C:5][C:6]=[Cz0,N:3] O Select example: C1=CC(C=C(C1=O)C)=O Run Example PT_03_00 - simple (aliphatic) imine -[#1,a,O:5][NX2:1]=[Cz{1-2}:2][CX4R{0-2}:3][#1:4]>>[#1,a,O:5][NX3:1]([#1:4])[Cz:2]=[C:3] O Select example: [C]1(CC[C]CC1)=[N] Run Example ☐ PT 04_00 - special imine -[Cz0R0X3:1]([C:5])=[C:2][Nz0:3][#1:4]>>[#1:4][Cz0R0X4:1]([C:5])[c:2]=[nz0:3] Select example: C(CC1=NC=C[NH]1)(C)C Run Example

New Rules: How, and which ones, to integrate in InChI

- New rules, as implemented in CACTVS, expressed as SMIRKS
- InChI doesn't have a SMIRKS parser
- Adding new tautomeric rules requires code changes in the core of InChI
- We picked ~20 prototropic rules as candidates for implementation in InChI
- No ring-chain or valence tautomerism rules impossible to add to current InChI
- Igor Filippov was able to add six new rules

Igor Filippov

New Rules Implemented

Note that example structures are just that: examples. Similar for the names. The SMIRKS are really defining the rule!

What have we gained with the six new rules?

Six new rules implemented in InChI library (based on V. 1.06 code) integrated in CACTVS.

== This is currently the only available implementation of these rules in InChI ==

Counting various representations/identifiers for recent version of PubChem (2020-02 Compound database):

71,600,000 compounds analyzed

Wolf-D. Ihlenfeldt

71,409,375 (100%) unique Standard InChlKeys (with KET and 15T options turned on) 66,353,137 (-7.08%) unique Tauto InChlKeys (with KET, 15T and all 6 new rules by Igor F. turned on)

Difference between Standard and Non-standard counts: 2,561,301 Difference between Standard and Tauto InChlKey counts: 5,056,238

Note: Numerous (non-standard) InChIKey values change when 6 new rules are turned on

Summary, Conclusions, and Questions for the Community

- Typically >80% of compounds in databases are amenable to one or more of 90 tautomeric rules
- Number of affected compounds per rule varies widely
- Current Standard InChl recapitulates ~30% of amenable compounds
- Current Non-Standard InChI (KET, 15T) recapitulates ~37% of compounds
- Only 3 out of 90 rules have Non-Standard InChI Success rates > 90%
- Only 7 rules have Non-Standard InChI Success rates > 50%
- 57 rules have Non-Standard InChI Success rates = 0%
- Question: Which ones are realistic, which ones may be too strict?
- Six new prototropic rules could be added to InChI code (and no, not 1,4-oxime/nitroso)
- Relative to Standard InChI, Non-Standard InChI (KET, 15T) equates 3.5% more compounds as tautomers of other compounds
- Relative to Standard InChI, "Tauto InChI" (KET, 15T, 6 new rules) equates 7% more compounds as tautomers of other compounds, i.e. yet 3.5% more than Non-Standard InChI
- When to release InChI with the 6 new rules? In version 1.06x? Or 1.07? Or wait for InChI V.2?
- Prototropic transforms: doubtful whether more can be added to InChI
- Ring-chain, valence tautomerism: likely incompatible with current InChI chemical structure model
- To be able to add more rules, InChI code likely needs to be re-written

Acknowledgements

- Devendra Dhaked
- Laura Guasch
- Hitesh Patel
- Igor Filippov
- Wolf-Dietrich Ihlenfeldt
- Jeff Saxe

Members of the IUPAC Working Group:

Gerd Blanke

Evan Bolton

Alex M. Clark

Bret Daniel

Devendra Dhaked

Laura Guasch

Wolf-Dietrich Ihlenfeldt

Gregory Landrum

John W. Mayfield

Hitesh Patel

Igor Pletnev

Roger Sayle

Dmitrii Tchekhovskoi