How InChI helps describe and identify biopharmaceuticals

Yulia Borodina

Office of Health Informatics

InChI symposium Fall 2019 San Diego, CA, August 23 - 24, 2019
Biopharmaceuticals

- Substances extracted from biological organism or synthesized on biological matrices
- Majority are proteins
- Often conjugated with small molecules, polymers or themselves in order to increase bioavailability, immunogenicity or to deliver an unspecific toxin
- Therapy of cancer, rheumatoid arthritis, migraine, asthma etc.
- Cost is very high
<table>
<thead>
<tr>
<th>Clinical Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT Number:</td>
</tr>
<tr>
<td>Title:</td>
</tr>
<tr>
<td>Conditions:</td>
</tr>
<tr>
<td>Sponsor:</td>
</tr>
<tr>
<td>Intervention:</td>
</tr>
<tr>
<td>Phases:</td>
</tr>
<tr>
<td>Age Groups:</td>
</tr>
<tr>
<td>Study Results:</td>
</tr>
<tr>
<td>Enrollment:</td>
</tr>
<tr>
<td>Other IDs:</td>
</tr>
</tbody>
</table>
RINDOPEPIMUT described by USAN

STATEMENT ON A NONPROPRIETARY NAME ADOPTED BY THE USAN COUNCIL

USAN (WW-34) RINDOPEPIMUT

PRONUNCIATION rin’ doe pep’ i mut

THERAPEUTIC CLAIM Immunotherapy for glioblastoma multiforme
and potentially other tumor types

CHEMICAL NAME

L-leucyl-L-alpha,-glutamyl-L-alpha,-glutamyl-L-lysyl-L-lysylglycyl-L-asparaginyl-L-tyrosyl-L-
valyl-L-valyl-L-threonyl-L-alpha,-aspartyl-L-histidyl-L-cysteine bicether with N-[4-({3-
mercapto-2,5-dioxo-1-pyrrolidinyl}) methyl][cyclohexyl][carboxyl]-keyhole limpet hemocyanin
(Megastoma cransulata)(1:1)

STRUCTURAL FORMULA

MOLECULAR WEIGHT 450-550 kDa

TRADEMARKS Rintega™

MANUFACTURER Cellidex Therapeutics, Inc.

CODE DESIGNATION CDX-110

CAS REGISTRY NUMBER 1108208-65-6

Hemocyanin
Hemocyanin

Keyhole limpet hemocyanin (KLH) is a very large, copper-containing protein molecule derived from the haemolymph of the inedible mollusc, Megathura crenulata. KLH is a highly immunogenic T-cell dependent antigen that is used increasingly in immunotoxicological studies, particularly in those involving animals.
We do not use InChI to define primary protein structure

Primary protein structure is defined by amino acid single letter code

<table>
<thead>
<tr>
<th>Code</th>
<th>Amino acid</th>
<th>Code</th>
<th>Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>alanine</td>
<td>I</td>
<td>isoleucine</td>
</tr>
<tr>
<td>R</td>
<td>arginine</td>
<td>L</td>
<td>leucine</td>
</tr>
<tr>
<td>N</td>
<td>asparagine</td>
<td>K</td>
<td>Lysine</td>
</tr>
<tr>
<td>D</td>
<td>aspartic acid</td>
<td>M</td>
<td>methionine</td>
</tr>
<tr>
<td>B</td>
<td>asparagine or aspartic acid</td>
<td>F</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>C</td>
<td>cysteine</td>
<td>P</td>
<td>proline</td>
</tr>
<tr>
<td>E</td>
<td>glutamic acid</td>
<td>S</td>
<td>serine</td>
</tr>
<tr>
<td>Q</td>
<td>glutamine</td>
<td>T</td>
<td>threonine</td>
</tr>
<tr>
<td>Z</td>
<td>glutamine or glutamic acid</td>
<td>W</td>
<td>tryptophan</td>
</tr>
<tr>
<td>G</td>
<td>glycine</td>
<td>Y</td>
<td>tyrosine</td>
</tr>
<tr>
<td>H</td>
<td>histidine</td>
<td>V</td>
<td>Valine</td>
</tr>
<tr>
<td>X</td>
<td>(wildcard / placeholder)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We use InChI to define modifications to the primary protein structure

• Modified amino acids
• Links
• Prosthetic groups
Example: definition of a modified amino acid

Lysine linked to Epidermal Growth Factor Receptor variant III

InChI canonical atom numbers for atoms that substitute N of amino group and C of carboxyl group of a natural amino acid
Example: definition of a link

CYSTEINE-GLUTATHIONE DISULFIDE

InChI canonical atom numbers for atoms that substitute N of amino group and C of carboxyl group of a natural amino acid

InChI=1S/C13H22N4O8S2/c14-6(12(22)23)1-2-9(18)17-8(11(21)16-3-10(19)20)5-27-26-4-7(15)13(24)25/h6-8H,1-5,14-15H2,(H,16,21)(H,17,18)(H,19,20)(H,22,23)(H,24,25)/t6-,7-,8-/m0/s1

(N,C) pairs

(14,12)
(15,13)
Example: definition of type 3 copper center

InChI=1S/6C6H9N3O2.2Cu/c6*7-5(6(10)11)1-4-2-8-3-9-4;;/h6*2-3,5H,1,7H2,(H2,8,9,10,11);;/q;;;;2+2/p-4/t6*5-;;/m000000../s1

(N,C) pairs
(7,6)
(18,17)
(29,28)
(40,39)
(51,50)
(62,61)
Identification

- InChI and ordered list of canonical (N,C) pairs provide that every modification is uniquely identified.

- Location of a modification in the protein is specified by positions of substituted amino acids.

- For example, Type 3 copper center position in hemocyanin is (2940, 2959, 2968, 3069, 3073, 3100).

- Complete 2D chemical structure of the modified protein can be reconstructed if needed.
Uncertain modifications are annotated by empirical probabilities

<quantity>
 <numerator xsi:type="URG_PQ" value="30" unit="mol"/>
 <denominator value="170" unit="mol"/>
</quantity>
Data on (some) proteins with UNIIIs are published

- Substance structures in XML format
 https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-indexing-files.cfm

- Substance names in text format
 https://fdasis.nlm.nih.gov/srs/

- Other product-related information in XML format

- SPL Substance Implementation Guide is #14 in
 https://www.fda.gov/media/84201/download
Protein descriptions provided by PubChem are misleading

This is not Aprutumab ixadotin
Protein descriptions provided by PubChem are misleading.
Hemoglobin Glutamer

Red Blood Cells (Bovine Derived) → Hemoglobin → Native HGB
- Tetramer 64 kD
- Dimer 32 kD

Stabilized Tetramer
- 64 kD

Gluteraldehyde Polymer

Hemopure
- Average 250 kD

Clinical Investigator’s Brochure, Version: ISHEM-003.20 Sept05