Software status
and InChI version 2
InChI Software releases

- **1.00**
 Apr 2005
 The beginning

- **1.01**
 Aug 2006
 InChI2Struct and many other things appear

- **1.02 beta**
 Sep 2007
 Introduced InChIKey (experimental), API changes

- **1.02 final**
 Jan 2009
 Introduced Standard InChI
 (only Standard supported; InChIKey layout changed)

- **1.03**
 Jun 2010
 Both Standard and Non-std InChI/Key now supported
InChI Software releases

- **1.04**
 Maintenance release;
 more permissive license

 Sep 2011

- **1.05**
 Introduced (experimental) support of polymers,
 large molecules, V3000 Molfiles;
 novel API section; multi-threading

 pre-release Oct 2016
 update Jan 2017
 final Feb 2017

- InChI for Reactions
 Mar 2017
InChI Software v. 1.05 release

- Maintenance release with a number of significant new features
- All things not included there will most likely be postponed to InChI version 2
Added more elements

- Updated software to current IUPAC confirmed elements list
 - (up to 118 oganesson which closes the Period 7)

- not too much work
- but has to be done in IUPAC-endorsed software
Support of Molfile V3000 format

- Allows one to deal with
 - large (bio)molecules beyond 1000 atoms limit
 - enhanced stereochemistry (e.g., mix of Rel/Abs)
 - extended support of organometallics (haptic bonds)
- The last two features are implemented in reader but are awaiting a future use in InChI 2
- Large molecules (> 1000 atoms) reading
Support of large molecules

- Limit of number of atoms increased (technically) from 1023 to 32767
- Some other internal limits relaxed
- May be extended further
- Tests on PDB
 100,000+ molecules;
 PDB -(OpenBabel) MOL V3000 → mol2inchi
25272 atoms
25836 bonds
2.84 sec (i5 2.5 GHz)
12757 atoms
13104 bonds
49.95 sec (i5 2.5 GHz)

PDB
5a21
viral protein, largest chain

InChI=1S/C8080H12360N210502526S46/c1-852-952-1654-4476-2684-2735-8046(4476)7957(12634)9769...
InChIKey=SBVFJWLGWCUFFW-BDSVIIHDASA-N
Cautionary notes

- Is speed a concern?

- Benchmarks: i5 2.5 GHz CPU (single-core) SSD

- 99% of longest chains of ~100,000 proteins of PDB (up to ~16,000 atoms) converted to InChI for <=180 sec

- Average processing time ~ 3.8 sec (average size 2400 atoms)

- Still, there are molecules not converted to InChI for reasonable time...
Cautionary notes

- InChI was not designed with $\gg 1000$ atoms in mind

- Though canonicalization and normalizations algorithms principally should work...

- and no problems were reported yet...

- several issues were already found by internal tests
Cautionary notes

- Renumbering tests
- ~70,000 max-length protein chains from PDB were tested, with 100 random atomic renumberings for each
- 14 failures detected so far
 - that is, 14 molecules from PDB give different InChI/Key’s on re-numberings
- No final clarity yet
 - problem may lie in normalization (mobile H) rather than in canonicalization
Cautionary notes

- InChI’s are getting very long
- InChIKey in its current form may be too short to serve for all the large molecules people may start to play with
- Experimental (beta) large-mol InChI/Keys are isolated from others by using ‘B’
Support of polymers

- Only simple polymers (no cross-linked, etc.)
- Source-based representation
- Structure-based representation
Known issues with polymers

- Issues on elucidation of canonical SRU
 - reported by Roger Sayle and John Mayfield, re-iterated today
 - BTW: explicitly stated in documentation (in part)

- Issue #1, simplified:
 - $[-\text{CH}_2\text{CH}_2-]_n$ NE $[-\text{CH}_2-]_n$
 - But should it? Odd/even, etc., repeatability

- Issue #2:
 - no polymer SRU “frame shift” analyzed when explicit end groups specified
 - $\text{H}_2\text{N}-[-\text{CH}_2-\text{C(O)}-\text{NH}-]_n-\text{CH}_2-\text{C(O)}\text{OH}$ NE $\text{H}_2\text{N}-\text{CH}_2-[-\text{C(O)}-\text{NH}-\text{CH}_2-]_n-\text{C(O)}\text{OH}$ NE $\text{H}_2\text{N}-\text{CH}_2-\text{C(O)}-[-\text{NH}-\text{CH}_2-\text{C(O)}-]_n-\text{OH}$
 - BTW: frame shift is of course supported when star atoms (*) are shown instead
 - $*-[-\text{CH}_2-\text{C(O)}-\text{NH}-]_n-*$ EQ $*-[-\text{C(O)}-\text{NH}-\text{CH}_2-]_n-*$ EQ $*-[-\text{NH}-\text{CH}_2-\text{C(O)}-]_n-*$

- In principle, solvable
 - But solution seems to be far from nice
 - Further feedback desired (this meeting, discussions, opinions of polymer chemists?)
New "extensible" (IXA) API

- IXA stands for “InChI Extensible API”
- Adds new API procedures including low-level functions to deal with atoms, bonds, etc.
- Code supplied by Digital Chemistry
 John Barnard with co-workers
- Ported to Linux
 with help of Pubchem team
 Evan Bolton, Paul Thiessen
- No problems reported (yet)
Support of safe multi-thread execution

- Allows one to significantly increase speed of InChI/Key generation while calling InChI Library on multi-CPU hardware (most of modern systems)

- Code changes supplied by Bio-Rad
 - Karl Nedwed

- Porting/testing on Linux with help of Pubchem team
 - Evan Bolton, Paul Thiessen

- No problems reported (yet)
Current status

- To early to remove “experimental” label from both large molecules and polymers

- 1.051 intermediate release
 - to include fixes for several already found minor bugs & ”features”
 - may be launched on Fall 2017
Suggested near future updates

- 1.051 intermediate release
 - to include fixes for several minor bugs & ”features”
 - tentatively planned for Fall 2017
InChI version 2

- Working groups

...
InChI version 2

- Very rough estimate (0-5) of implementation effort
 - Tautomerism 3.5
 - moderate to significant
 - Organometallics 4.5
 - significant to monstrous
 - Advanced large molecules 4.5
 - significant to monstrous
 (depend on canonicalization issues, HELM integration, ...)
InChI version 2

- Very rough estimate of implementation effort
 - QR-codes: 2
 - minor
 - Mixtures: 2.5
 - minor to moderate
InChI version 2

- Other (no working-groups)

- Enhanced stereo (following V3000)
 - Collections, ABS/AND/OR
 - Relatively straightforward
InChI version 2

- Other (no working-groups)

- Longer InChIKey
 - “codebreaking” sport
 - anyway, 1st block is not a real issue
 - Tolerate $\sim 1 \times 10^9$ entries
 - (Andrey Erin: 12 collisions per 27×10^9, theor. estimate is ~ 10)
 - may be slightly increased in length

- 2nd block is what really counts!
InChI version 2

- Longer InChIKey

 2nd block may really have problems

 There are much things there already (think of carbohydrates!) ...
 people are trying to squeeze everything in there (polymers...mixtures...)
 and this likely will continue)

 - Make 2nd block significantly longer
 - or just add 3rd car to the train?