InChI Tag: Toolkits

8 posts

PubChem chemical structure standardization

Abstract

Background:

PubChem is a chemical information repository, consisting of three primary databases: Substance, Compound, and BioAssay. When individual data contributors submit chemical substance descriptions to  substance, the unique chemical structures are extracted and stored into Compound through an automated process called structure standardization. The present study describes the PubChem standardization approaches and analyzes them for their success rates, reasons that cause structures to be  rejected, and modifcations applied to structures during the standardization process. Furthermore, the PubChem standardization is compared to the structure normalization of the IUPAC International Chemical Identifer (InChI) software, as manifested by conversion of the InChI back into a chemical structure.

Consistency of systematic chemical identifiers within and between small-molecule databases

Abstract

Background:

Correctness of structures and associated metadata within public and commercial chemical databases
greatly impacts drug discovery research activities such as quantitative structure–property relationships modelling and compound novelty checking. MOL files, SMILES notations, IUPAC names, and InChI strings are ubiquitous file formats and systematic identifiers for chemical structures. While interchangeable for many cheminformatics purposes there have been no studies on the inconsistency of these structure identifiers due to various approaches for data integration, including the use of different software and different rules for structure standardisation. We have investigated the consistency of systematic identifiers of small molecules within and between some of the commonly used chemical resources, with and without structure standardisation.

Results:

The consistency between systematic chemical identifiers and their corresponding MOL representation varies greatly between data sources (37.2%-98.5%). We observed the lowest overall consistency for MOL-IUPAC names. Disregarding stereochemistry increases the consistency (84.8% to 99.9%). A wide variation in consistency also exists between MOL representations of compounds linked via cross-references (25.8% to 93.7%). Removing stereochemistry improved the consistency (47.6% to 95.6%).

Conclusions:

We have shown that considerable inconsistency exists in structural representation and systematic chemical identifiers within and between databases. This can have a great influence especially when merging data and if systematic identifiers are used as a key index for structure integration or cross-querying several databases. Regenerating systematic identifiers starting from their MOL representation and applying well-defined and documented chemistry standardisation rules to all compounds prior to creating them can dramatically increase internal consistency.

Towards a Universal SMILES representation – A standard method to generate canonical SMILES based on the InChI

Abstract

Background:

There are two line notations of chemical structures that have established themselves in the field: the SMILES string and the InChI string. The InChI aims to provide a unique, or canonical, identifier for chemical structures, while SMILES strings are widely used for storage and interchange of chemical structures, but no standard exists to generate a canonical SMILES string.

Results:

I describe how to use the InChI canonicalisation to derive a canonical SMILES string in a straightforward way, either incorporating the InChI normalisations (Inchified SMILES) or not (Universal SMILES). This is the first description of a method to generate canonical SMILES that takes stereochemistry into account. When tested on the 1.1 m compounds in the ChEMBL database, and a 1 m compound subset of the PubChem Substance database, no canonicalisation failures were found with Inchified SMILES. Using Universal SMILES, 99.79% of the ChEMBL database was canonicalised successfully and 99.77% of the PubChem subset.

Conclusions:

The InChI canonicalisation algorithm can successfully be used as the basis for a common standard for canonical SMILES. While challenges remain – such as the development of a standard aromatic model for SMILES – the ability to create the same SMILES using different toolkits will mean that for the first time it will be possible to easily compare the chemical models used by different toolkits.

Detection of IUPAC and IUPAC-like chemical names

Abstract

Motivation:

Chemical compounds like small signal molecules or other biological active chemical substances are an important entity class in life science publications and patents. Several representations and nomenclatures for chemicals like SMILES, InChI, IUPAC or trivial names exist. Only SMILES and InChI names allow a direct structure search, but in biomedical texts trivial names and Iupac like names are used more frequent. While trivial names can be found with a dictionary-based approach and in such a way mapped to their corresponding structures, it is not possible to enumerate all IUPAC names. In this work, we present a new machine learning approach based on conditional random fields (CRF) to find mentions of IUPAC and IUPAC-like names in scientific text as well as its evaluation and the conversion rate with available name-to-structure tools.

Results:

We present an IUPAC name recognizer with an F1 measure of 85.6% on a MEDLINE corpus. The evaluation of different CRF orders and offset conjunction orders demonstrates the importance of these parameters. An evaluation of hand-selected patent sections containing large enumerations and terms with mixed nomenclature shows a good performance on these cases (F1 measure 81.5%). Remaining recognition problems are to detect correct borders of the typically long terms, especially when occurring in parentheses or enumerations. We demonstrate the scalability of our implementation by providing results from a full MEDLINE run.

Availability:

We plan to publish the corpora, annotation guideline as well as the conditional random field model as a UIMA component.

Contact:roman.klinger@scai.fraunhofer.de

Applications of the InChI in cheminformatics with the CDK and Bioclipse

Abstract

Background

The InChI algorithms are written in C++ and not available as Java library. Integration into software written in Java therefore requires a bridge between C and Java libraries, provided by the Java Native Interface (JNI) technology.

Results

We here describe how the InChI library is used in the Bioclipse workbench and the Chemistry Development Kit (CDK) cheminformatics library. To make this possible, a JNI bridge to the InChI library was developed, JNI-InChI, allowing Java software to access the InChI algorithms. By using this bridge, the CDK project packages the InChI binaries in a module and offers easy access from Java using the CDK API. The Bioclipse project packages and offers InChI as a dynamic OSGi bundle that can easily be used by any OSGi-compliant software, in addition to the regular Java Archive and Maven bundles. Bioclipse itself uses the InChI as a key component and calculates it on the fly when visualizing and editing chemical structures. We demonstrate the utility of InChI with various applications in CDK and Bioclipse, such as decision support for chemical liability assessment, tautomer generation, and for knowledge aggregation using a linked data approach.

Conclusions

These results show that the InChI library can be used in a variety of Java library dependency solutions, making the functionality easily accessible by Java software, such as in the CDK. The applications show various ways the InChI has been used in Bioclipse, to enrich its functionality.

Keywords:

InChI, InChIKey, Chemical structures, JNI-InChI, The Chemistry Development Kit, OSGi, Bioclipse, Decision
support, Linked data, Tautomers, Databases, Semantic web

The Chemical Translation Service—a web-based tool to improve standardization of metabolomic report

Summary: Metabolomic publications and databases use different database identifiers or even trivial names which disable queries across databases or between studies. The best way to annotate metabolites is by chemical structures, encoded by the International Chemical Identifier code (InChI) or InChIKey. We have implemented a web-based Chemical Translation Service that performs batch conversions of the most common compound identifiers, including CAS, CHEBI, compound formulas, Human Metabolome Database HMDB, InChI, InChIKey, IUPAC name, KEGG, LipidMaps, PubChem CID+SID, SMILES and chemical synonym names. Batch conversion downloads of 1410 CIDs are performed in 2.5 min. Structures are automatically displayed.

Implementation: The software was implemented in Groovy and JAVA, the web frontend was implemented in GRAILS and the database used was PostgreSQL.

Availability: The source code and an online web interface are freely available. Chemical Translation Service (CTS): http://cts.fiehnlab.ucdavis.edu