IUPAC International Chemical Identifier (InChl)

InChl version 1, Software version 1.05

API| Reference

Last revision date: January 31, 2017

This document is a part of the release of the IUPAC International Chemical Identifier with
InChIKey, version 1, software version 1.05.

CONTENTS

OVBIVIBWW ...tttk kbbb bbb bbb e et e bt bbb e b e et et et et e bt bbb 7
CIASSIC INCNT AP <.ttt bbb 9
Generation of INChI frOM StIUCKTUIEooviiiiiiiieice s 9
GEUINCHI ...ttt et e e ne e 9
GetINCHIEX (NEW N V. 1.05) ...uooiieieiie et 12
FIEEINCHI ...t 13
Free_INCHI_INPUL......oiiie e re e esneenns 14
Get_inchi_INput_FromAUXINTO.......ccoiiiiie s 14
GEISTAINCHI ... et 15
FrEESTAINCHI 17

Free Std_INChI_INPUL ..o 17

Get_std_inchi_Input_FromAUXINTOccooiiiiiiiei e 17

Generation of InChl from structure, step-by-Step Wayccccoveveiieiiieie i 17

INCHIGEN_CFEALE ..ot 18
INCHIGEN _SEUUP ...ttt 19
INCHIGEN_DONOIMAlIZAION........coiiiiieiiieiiieie e 20
INCHIGEN_Do0oCanonicalization...........cccueiiiieiieiecie e 20
INCHIGEN_DOSEraliZation.........c.cccveiiiiieiiiie e 21
INCHIGEN _RESEL ...ttt nee e 22
INCHIGEN_DESIIOY ...ttt 23
STDINCHIGEN_CIALEeeiiiieieeiie ettt 23
STDINCHIGEN_SEUUP ..ot 23
STDINCHIGEN_DoONOrmMalizationccccviieiierieiieseese e sie s 24
STDINCHIGEN_DoCanoniCaliZationcccvvereeieneeresieseesieseesieesie e seeesee e 25
STDINCHIGEN_DoOSerializationcccueiviieiieie e 25
STDINCHIGEN_RESEL ...t 26
STDINCHIGEN_DESIIOYccutiiiieiiieiiieiie ettt 26
Generation of InChl directly from Molfile (new in v. 1.05).......ccccoceviiiiiiiniiicnccee 27
MakeINCHIFromMolfileText (new in V. 1.05)cccooeiiiiieiicc e 27
Restoring structure from INChl or AUXINTO.......c.coiiiiiiiicc e 27
GetStrUCTFTOMINCHI ... 27
GetStructFromINCHIEX (NeW iN V. 1.05) ...covviiiiiiiie e 28
FreeStructFrOMINCHI ..o s 29
GetStruCtFrOMSIAINCH I ... 29
FreeStruCtFromMSEAINCHI ..o 30
11 01 =) SR 30

GetINCHIKEYFIOMINCHIooiiiiii e 30

(08 1= 10 g N (O o 1 VSRS 32
GetStdINCHIKeYFromStAINCHI ..o 32
Test and ULIITY PrOCEAUIES.coiiieeeeeeee et 33
GEtINCHIFTOMINCHI ..ot e 33
CRECKINCHI ...ttt 34
GEtSIINGLENGEN ... 35
INChl Extensible AP1 — XA (NeW IN V. 1.05).....ciiiiiiiiiieienee e 35
SEALUS ODJECLS ...viiirceie ettt re e st e e s be e b e s e e sraenreeneenreeee s 36
TYPES ANA CONSTANTSevieieieiciiee et e et e st e e ste e e sraesreeee s 37
FUNCLIONS ...ttt bbbttt ne b bt re e 37
IXA_STATUS CrALE ...ttt ettt sttt e e b b nre e 37

D AN Y AN IO ST O [SR 38
IXA _STATUS _DESIIOY ...viiiiiiie ittt sttt snb e snbe e nnae e nnne e nes 38
IXA _STATUS _HASEITON ..ottt 38
XA _STATUS HASWAIMINGecveeiiieieciesieeie e see e ste e e e e sneesreesaeeneesseenseanee e 39
IXA_STATUS _GELCOUNT ..ottt sttt 39
IXA _STATUS GeISEVEIILY ..ecvvieiieiiie ettt 40
IXA _STATUS _GEIMESSAQE . .vveiiiieiiiie i e sttt ettt stee e see e e sae e e e snae e ssae e snneeenes 40
MOIECUIE ODJECLS ...ttt 41
SEEIBOCNEMISIIY ..ttt e e et e e be e saae e nteeaneas 41
TYPES AN CONSTANTS ... oottt e e e e et re e sree s 42
Functions to Create, Clear and Destroy Molecule ODbjJectsccocevvieiieieninieeeen 44
IXA MOL CrEALB......ieiii et e et e e e e e e e e s nb e e e e e annraeeeans 44

IXA_MOL_CIEATveeeeevveereeseeeeeeeeeessseseeseeesessseseeessessseesseessessssesseessssssesseeesesssseeeen 45

IXA _MOL_DESIIOYeeiiiiiiiiiie ettt 45
Functions Operating on Complete MOIECUIEScoeiiiiiiiiiiic e 46
IXA _MOL_ReaUMOITIIEooieiieieeee e e 46
IXA_ MOL_REAAINCHL ... eeeeeseeeeeeeeeeeeeeeses s s esseses e es e es s ee s eeseseseeese s 46
IXA MOL_SEECRIIAL ..o eeeeeee s st es e esseses s es e eeseseseses e enens 47
IXA _MOL_GELCRITAl ... 48
Functions to Add and Defing ATOMScoiiiiiiiiieeree e 48
IXA _MOL_Creat@ATOM. . ..ci ittt sb e srae e nnne e e 48
IXA MOL_SetAtOMEIEMENL.......cooiieiecieeee e 49
IXA_MOL_SetAtomATOMICNUMDETcoiiiieiieree e 50
IXA_MOL_SEEALOMIMASSoovviiniieiiieeiee sttt ettt st eesbe e b e nnee e 50
IXA MOL_SEtATOMOCRNAITE . .ocvve ettt nne s 51
IXA MOL_SetAtomRAdICAl...........coveiiiiiece e 52
IXA MOL_SetAtOMHYAIOQENScviieieiiiciecie ettt 52
IXA MOL_SEEAIOMX ... eeeeeeeee e s eeeeeee e es e eeseeeseene e 53
IXA_ MOL_SEEAIOMY ..o eeeeeee e eeee s esseeee s ee e ees s e 54
IXA MOL_SEEAIOMZ ... eeeees e ee e eeseeese s es e e seeesseess s es s eeseeeseseseseseenens 54
Functions to Add and Define BONdS ... 55
IXA MOL_CreateBondccccoueiieiieieiiesieeie e e siee st ee e ste e srae e eneesnaesneenee e 55
IXA_MOL_SEtBONATYPE ...ttt 56
IXA _MOL_SetBONAWEAGEcoevieiiieeie ettt 56
IXA_MOL_SetDbIBONACONTIQ ..c.vveiieiieiiieiiicie e 57
Functions to Add and Define Stere0desCriptorS..........coveieriiereiiiesiieseee e e eee e 58

IXA MOL_CreateStereoTetrahedronccoveieeiiievie i 58

IXA MOL_CreateStereORectangleccccveiviiiiiic e 59
IXA_MOL_CreateStere0ANtIRECtANGIEoovveiiieiieiee e 61
XA _MOL_SEtSIErEOPAITLYccvveiieeiieie sttt 62
Functions to Navigate Within a Molecule.............ccccoovviiiicie e 63
IXA _MOL_GEINUMATLOMS. .. .eiiiiiieiiiie ittt nnne e 63
IXA _MOL_GEtNUMBONGSoovveiiieiieiesieesie e sneenee e 63
IXA MOL_GELALOMIG ... e see e ee e eee s 64
IXA MOL_GEBONAI ... es st es e esesses e es s es s e s seseseseseenens 64
IXA MOL_GEetAIOMINGEX ..ot 65
IXA _MOL_GEetBONAINAEX......cciiiieiieieciiesie ettt nne s 66
IXA _MOL_GetAtOMNUMBONGSooviiiieiieie e 66
IXA _MOL_GEtATOMBONG.......ceiiieiieieeieerieee e neeenee e 67
IXA MOL_GetCommONBONG.........ccccouiiiiiiicie et 68
IXA MOL_GetBONUALOML.......ooiiiiicec ettt 68
IXA _MOL_GEetBONUALOMZ........o ettt esneenneenee e 69
Functions to Return Information ADOUt AtOMS..........cooviiiiiiiiiiicee e 70
IXA MOL_GetAtOMEIEMENT........ooiiiieie e 70
IXA_MOL_GetAtomALOMICNUMDENooviiiiiiieecie e 70
IXA_MOL_GELALOMIMASS.....ctiiiiieiiieeiie sttt sre et snee s 71
IXA MOL_GetATOMCNAITE. ...c.veieeieeiesieesie ettt e ste e e aeeneesreesneenee e 71
IXA _MOL_GetAtoMRAICAlc.coiviiiieiie e 72
IXA_MOL_GetAtOMHYAIrOGENS.....cviiiieiiieiieie sttt 73
IXA MOL_GELALOMX .o eeeeee e eeeee e eseesssee e asesess e aseeeseas e eseeeseeseseesees e 73

IXA_MOL_GELATOMY ovvvoovoeeeveeeoeeseeeseesseesessseesseessesssessseessesssssseessesssesseessesssseeeens 74

IXA MOL_GEUALOMZ ..o eeeees e eeeeeeeeesee s s es e e seesseses e es e es s eeseseseseseses s 74
Functions to Return Information About BoNnds..........cccooeiiiiiiiiicicicce 75
IXA _MOL_GEtBONUTYPE ..ooeeeiieiiieiieee sttt sttt 75
IXA MOL_GetBONAWEAJE ..ottt 76
IXA MOL_GetDbIBONACONTIG.....cciiiiiiiiiicie e 77
Functions to Return Information About Stereodescriptorsccooevevererencncnennenn. 77
IXA_MOL_GEINUMSLEIBOS.eeeuiieiite ettt be e 77
IXA MOL_GEtStere0ld.......coviieiieie s 78
IXA MOL_GetStere0lINdeXc.ccveiiieieiiecie e 78
IXA_MOL_GEetStere0TOPOIOGYveeeieieriiriesiisieeiieie et 79
IXA _MOL_GetStere0Central AtOMccooieieiieiieie s 80
IXA _MOL_GetStereoCentralBoNd..........cccoveieiieieeie e 80
IXA MOL_GetStereONUMVEITICESiivieiicie ettt 81
IXA _MOL_GELSIEIEOVEITEX ...veiiiieiiiie ittt site ettt nes 82
IXA MOL_GEtStErEOPAILYcuveieieieeeecieesie et nneenee e 83

INCHI BUIIAEr ODJECTS ...t 83
TYPES AN CONSTANTS ..ottt e e s e e e reeenre e sree s 84
Functions to Generate INCRISccooiiiiii 86
IXA_INCHIBUILDER _CIALEeeiieiiie ettt 86
IXA _INCHIBUILDER _SetMOIEBCUIEoeveeeie et 86
IXA_INCHIBUILDER_GEtINCRI ...t 87
IXA_INCHIBUILDER _GEtAUXINTOocvviiiiiiiiieieee e e 87
IXA_INCHIBUILDER _GELLOQcoiveiieeiieieiee e 88

IXA_INCHIBUILDER_DESITOYrevvveeereseseseeesessesssessseessessssessessesssesseessessssesoens 89

Functions to Set INChl-Generation OPtioNScccccveviiieiiese e 89
IXA_INCHIBUILDER _SEtOPLIONoovviiiieiieiie sttt 89
IXA_INCHIBUILDER_SetOption_STErEOeceeiiieieiiieiieeiesiee sttt 90
IXA INCHIBUILDER_SetOption_TiMEOUL........cccccoeieerieeieiee e esie e 91
INChIKeY BUIIAEr ODJECLSvicieeiicieee ettt 92
IXA_INCHIKEYBUILDER _Create.......cciiiiiiiiiieeiie ettt 92
IXA_INCHIKEYBUILDER_SetINChI.....coiviiiiiieiee e 92
IXA_INCHIKEYBUILDER_GetINChIKEY......cccoviiiiiiiiiii s 93
IXA_INCHIKEYBUILDER _DESIIOY......ccouiiitiiiiieiieiii et 94
Overview

The current version of InChl Identifier is 1; the current status of the InChl software is
1.05 (Winter 2017) release. Previously released versions 1.01 (2006), 1.02-beta (2007), 1.02-
standard (2009), 1.03 (June 2010) and 1.04 (September 2011) as well as all earlier versions,

are now considered obsolete.
InChl Software v. 1.05 includes several significant additions to previous versions.

Large molecules (up to 32767 atoms) are now supported, in an experimental mode. Note that
INChls produced have a prefix ‘InChl=1B’ indicating beta status of these identifiers.
Analogously, flag character ‘B’ is used in InChlKey instead of ‘S’ (Standard) or ‘N’ (Non-
standard).

Also added is an experimental support of simple regular single-strand polymers (more details
are given elsewhere; see also v. 1.05 ReleaseNotes). Note that InChl/InChIKey for polymers

also carry a ‘B’ mark denoting their beta status.

Large molecules are supported by already known API calls provided that a new option

‘LargeMolecules’ is supplied by the caller.

Generation of InChl for polymers does require use of the new Ex (extended functionality) API

functions Get INCHIEx () and others, see below.

Also added is native API support for direct Molfile to InChl conversion through a new function
MakeINCHIFromMolfileText (). This function uses the same Molfile parser as inchi-
1 executable thus ensuring that any correct caller of the InChl Library procedure will produce

the same result as inchi-1.

A whole new set of API calls, IXXA functions, is included. I)XA stands for Extended InChl API.
In particular, it contains new API procedures including low-level functions to deal with atoms,

bonds, etc., see dedicated section below in this document.

Finally, the InChl Library is now significantly modified internally to support safe multi-
threading execution, both under Windows and Linux.

By default, InChl Software v. 1.05 generates standard InChl. In particular, the standard
identifier is generated when the software is used without any specified options. If some options
are specified, and at least one of them qualifies as related to non-standard InChl, the software
produces non-standard InChl/InChlKey. However, for compatibility with the previous v. 1.02-
standard (2009) release, API calls which deal only with standard InChl — for example,
GetStdINCHI () - are retained (technically, they provide a pre-customized interface to

general-purpose API functions).

Below is a brief description of InChl/InChIKey API functions (for more details on the related

data structures/parameters see inchi api . h header file in the InChl Software source code).

Classic InChl API

The functions of classic INChl API are considered below. They are mainly the same as in the
previous Software version (see, however, the notes below on newly introduced “Ex” (extended

functionality) versions and MakeINCHIFromMolfileText () procedure).

Generation of InChl from structure

GetINCHI

int INCHI DECL GetINCHI (inchi Input *inp, inchi Output *out);

Description

GetINCHI () is the primary function producing InChl. It uses input data in its own

inchi Input format.

GetINCHI produces standard InChl if no InChl creation/stereo modification options are
specified. If at least one of the options SUU | SLUUD | RecMet | FixedH | Ket |

15T | SRel | SRac | SUCF is specified, the generated InChl will be non-standard.

Input

Data structure inchi Input is created by the user, typically either by reading and parsing
Molfile or by conversion from some existing internal molecular representation. Data layout is

described inthe inchi api.h header file in the InChl Software source code.

Options supplied to GetINCHI in inchi Input.szOptions should be preceded by

‘/> under Windows or ‘-* under Linux). Valid options are listed below.

Option Meaning Default behavior
(standard; if no option
supplied)

Structure perception (compatible with standard InChl)
NEWPSOFF Both ends of wedge point to Only narrow end of
stereocenters wedge points to
stereocenter

DoNotAddH All hydrogens in input structure Add H according to usual

are explicit valences

SNon Ignore stereo Use absolute stereo

Stereo interpretation (lead to generation of non-standard InChl)

SRel Use relative stereo Use absolute stereo

SRac Use racemic stereo Use absolute stereo

SUCF Use Chiral Flag in MOL/SD file Use absolute stereo

record: if On — use Absolute
stereo, Off — use Relative stereo

ChiralFlagON Set chiral flag ON -

ChiralFlagOFF Set chiral flag OFF -

InChl creation options (lead to generation of non-standard InChl)

LargeMolecules Experimental, new inv. 1.05 Input is limited to not

Allows input of molecules up to more than 1024 atoms

32767 atoms

10

SUU

SLUUD

FixedH

RecMet

KET

15T

AuxNone

Wnumber

OutputSDF

WarnOnEmptyStructure

Produces ‘InChl=1B’ indicating

beta status of resulting identifiers

Always indicate

unknown/undefined stereo

Stereo labels for “unknown” and

“undefined” are different, ‘u’ and

‘?’, resp. (new option)

Include reconnected metals
results

Include Fixed H layer

Account for keto-enol

tautomerism

extension to InChl 1)

Account for

(experimental;

1,5-tautomerism

(experimental; extension to InChl

1)

Miscellaneous

Omit auxiliary information

Set time-out per structure in

seconds; WO means unlimi

ted

Output SDfile instead of InChl

Warn and produce empty

for empty structure

11

InChl

Does not indicate
unknown/undefined
stereo unless at least one

defined stereo is present

Stereo labels for

“unknown” and
“undefined” are the same

(?)

Do not include

Do not include

Ignore keto-enol

tautomerism

Ignore 1,5-tautomerism

Include

The default wvalue is

unlimited

SaveOpt Save custom InChl creation

options (non-standard InChl)

Output

Data structure inchi Output is described in the inchi api.h header file.
inchi Output does not need to be initialized out to zeroes;, see
FreeNCHI () /FreeSTDINCHI () on how to deallocate it. Strings in inchi Output are

allocated and deallocated by InChl.

Return codes

Code Value Meaning

inchi Ret OKAY 0 Success; no errors or warnings
inchi Ret WARNING 1 Success; warning(s) issued

inchi Ret ERROR 2 Error: no InChl has been created

inchi Ret FATAL 3 Severe error: no InChl has been created (typically,

memory allocation failure)

inchi Ret UNKNOWN 4 Unknown program error

inchi Ret BUSY 5 Previous call to InChl has not returned yet
inchi Ret EOF -1 No structural data have been provided
inchi Ret SKIP -2 Not used in InChl library

GetINCHIEX (new in v. 1.05)

INCHI APT int INCHI DECL GetINCHIEX (inchi InputEx *inp,

inchi Output *out);

12

Description

Extended version of GetINCHI() supporting v. 1.05 extensions: polymers and Molfile V3000

extended features (partial support).

Note that support of V3000 features is a provisional one: extended data on haptic coordination
bonds and stereo collections are read but not used currently (as their inclusion requires

significant modification of the InChl identifier itself, not just the Software).

Being able to treat polymer input structures, in other cases this function behaves exactly as the
GetINCHY() basic API call.

Input

Extended input data structure inchi InputEx is asuperset of inchi Input of previous
versions. The additions are newly included data sub-structures holding information on polymers
and V3000 extended features (mostly reflecting a way of description used by Accelrys in
Molfiles).

Data structure inchi InputEx is created by the user, typically either by reading and parsing

Molfile or by conversion from some existing internal molecular representation.

Data layout is described in the inchi api.h header file in the InChl Software source code.

Output

The same as for Get INCHTI ().

FreelNCHI

void INCHI DECL FreeINCHI (inchi Output *out);

Description

This function should be called to deallocate char* pointers obtained from each Get INCHT call.

13

Free_inchi_Input
void INCHI DECL Free inchi Input(inchi Input *pInp);

Description

To deallocate and write zeroes into the changed members of pInchiInp->pInp call

Free inchi Input(inchi Input *plInp).

Get_inchi_Input_FromAuxInfo

int INCHI DECL Get inchi Input FromAuxInfo (
char *szInchiAuxInfo, int bDoNotAddH,

int bDiffUnkUndfStereo, InchilInpData *pInchilnp);
Description

This function creates the input data structure for InChl generation out of the auxiliary

information (AuxInfo) string produced by previous InChl generator calls.
This input structure may then be used in conjunction with the Get INCHT API call.

Note the parameter bDi f fUnkUndfStereo (if not 0, use different labels for unknown and
undefined stereo) appeared in the software v. 1.03.
Input
szInchiAuxInfo
contains ASCIIZ string of InChl output for a single structure or only the AuxInfo line
bDoNotAddH
if 0 then InChl will be allowed to add implicit H
bDiffUnkUndfStereo

if not 0, use different labels for unknown and undefined stereo

14

pInchilnp
should have a valid pointer pInchiInp->pInp to an empty (all members = 0)
inchi Input structure
Output
The following members of pinp may be filled during the call: atom, num atoms,
stereo0D, num stereolOD
Return codes

Same as for Get INCHT.

GetStdINCHI

int INCHI DECL GetStdINCHI (inchi Input *inp, inchi Output *out);

Description

This is a “standard” counterpart of Ge t INCHT () which may produce only the standard InChl.

Input

The same as for GetINCHI except that perception/creation options supplied in

inchi_Input.szOptions may be only:
NEWPSOFF DoNotAddH SNon
Other possible options are:

AuxNone

Wnumber

OutputSDF

WarnOnEmptyStructure

15

Output

The same as for Get INCHT except for that only standard InChl is produced.

Return codes

The same as for Get INCHTI .

16

FreeStdINCHI
void INCHI DECL FreeStdINCHI (inchi Output *out);
Description

This is a “standard” counterpart of FreeINCHI which should be called to deallocate char*

pointers obtained from each Get StdINCHT call.

Free_std_inchi_Input

void INCHI DECL Free std inchi Input(inchi Input *pInp);

Description

This is a “standard” counterpart of Free inchi Input

Get_std_inchi_Input_FromAuxInfo

int INCHI DECL Get std inchi Input FromAuxInfo (

char *szInchiAuxInfo,

int bDoNotAddH,

InchiInpData *pInchilInp);

Description

This is a “standard” counterpart of Get std inchi Input FromAuxInfo.

Generation of InChl from structure, step-by-step way

The main purpose of procedures presented below is to modularize the process of InChl
generation by separating normalization, canonicalization, and serialization stages. Using these

17

API functions allows, in particular, checking intermediate normalization results before

performing further steps and getting diagnostic messages from each stage independently.

The functions use exactly the same inchi Input and inchi Output data structures as
“classic” InChl API functions do.

However, a new data structure, INCHIGEN DATA, has been added to expose intermediate

results (see inchi api.h header file).

A typical process of InChl generation with this API calls is as follows.
1) Get handle of a new InChl generator object:
HGen = INCHIGEN Create();

2) read a molecular structure and use it to initialize the generator:
result = INCHIGEN Setup (HGen, pGenData, pInp);

3) normalize the structure:
result = INCHIGEN DoNormalization (HGen, pGenData);
optionally, look at the results;

4)) obtain canonical numberings:
result = INCHIGEN DoCanonicalization (HGen, pGenData);

5) serialize, i.e. produce InChl string:
retcode=INCHIGEN DoSerialization (HGen,GenData, pResults);

6) reset the INChl generator
INCHIGEN Reset (HGen, pGenData, pResults);
and go to step 2 to read next structure, or

7) Finally destroy the generator object and free standard InChl library memories:
INCHIGEN Destroy (HGen) ;

Note that there are also “standard” counterparts of general-purpose functions; these “standard”

API calls described below are retained for compatibility and convenience reasons.

INCHIGEN_Create
INCHIGEN HANDLE INCHI DECL INCHIGEN Create (void);

Description

InChl Generator: create generator.

18

Once the generator is created, it may be used repeatedly for processing the new structures.
Before repetitive use, the pair of calls INCHIGEN Reset / INCHIGEN Setup should

occur.

Returns

The handle of InChl generator object or NULL on failure.

Note: the handle is used just to refer to the internal InChl library object, whose structure is
invisible to the user (unless the user chooses to browse the InChl source code). This internal

object is initialized and modified through the subsequent calls to INCHIGEN API functions.

INCHIGEN_Setup

int INCHI DECL INCHIGEN Setup (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Input * pInp);

Description

InChl Generator: initialization stage (storing a specific structure in the generator object).
Note: INCHIGEN DATA object contains intermediate data visible to the user, in particular, the

string accumulating diagnostic messages from all the steps.

Input

INCHIGEN_HANDLE HGen is one obtained through INCHIGEN Create call.

INCHIGEN DATA * pGenData is created by the caller. It need not to be initialized.

19

Data structure inchi Input * pInp Iisthe same as for Get INCHI.

Return codes

The same as for Get INCHI.

INCHIGEN_DoNormalization

int INCHI DECL INCHIGEN DoNormalization (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData);

Description

InChl Generator: perform structure normalization.

Should be called after INCHIGEN Setup.

Note: INCHIGEN DATA object explicitly exposes the intermediate normalization data, see

inchi api.h.

Input

INCHIGEN HANDLE HGen and INCHIGEN DATA *pGenData asthey are after calling

INCHIGEN Setup.

Return codes

The same as for Get INCHT.

INCHIGEN_DoCanonicalization

int INCHI DECL
INCHIGEN DoCanonicalization(INCHIGEN HANDLE HGen,

INCHIGEN DATA * pGenData);

20

Description
InChl Generator: perform structure canonicalization.

Should be called after INCHIGEN DoNormalization.

Input

INCHIGEN_HANDLE HGen and INCHIGEN DATA *pGenData as they are after calling

INCHIGEN DoNormalization.

Return codes

The same as for Get INCHI.

INCHIGEN_DoSerialization

int INCHI DECL INCHIGEN DoSerialization (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Output * pResults);

Description

InChl Generator: perform InChl serialization.

Should be called after INCHIGEN DoCanonicalization.

Input

INCHIGEN HANDLE HGen and INCHIGEN DATA *pGenData as they are after calling

INCHIGEN DoCanonicalization.

Return codes

The same as for Get INCHT.

21

INCHIGEN_Reset

void INCHI DECL INCHIGEN Reset (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Output * pResults);
Description

InChl Generator: reset (use before calling INCHIGEN Setup(...) to start processing the next

structure and before calling INCHIGEN Destroy(...))
Input

INCHIGEN HANDLE HGen and INCHIGEN DATA *pGenData as they are after calling

INCHIGEN DoSerialization.

Return codes

The same as for Get INCHTI.

22

INCHIGEN_Destroy

void INCHI DECL INCHIGEN Destroy (INCHIGEN HANDLE HGen) ;

Description

Destroys the generator object and frees associated InChl library memories.

Important: make sure INCHIGEN Reset(...) is called before

INCHIGEN Destroy(...).

Input

The handle of InChl generator object.

STDINCHIGEN_Create

INCHIGEN HANDLE INCHI DECL STDINCHIGEN Create (void);

Description

Standard InChl Generator: create generator.

This is a “standard” counterpart of INCHIGEN Create.

Returns

calling

The handle of standard InChl generator object or NULL on failure. Note: the handle serves to

access the internal object, whose structure is invisible to the user (unless the user chooses to

browse the InChl library source code which is open).

STDINCHIGEN_Setup

int INCHI DECL STDINCHIGEN Setup (INCHIGEN HANDLE HGen,

23

INCHIGEN DATA * pGenData,

inchi Input * pInp);
Description

Standard InChl Generator: initialization stage (storing a specific structure in the generator

object).

This is a “standard” counterpart of INCHIGEN Setup.

Note: INCHIGEN DATA object contains intermediate data visible to the user, in particular, the

string accumulating diagnostic messages from all the steps.

Input

INCHIGEN HANDLE HGen is one obtained through INCHIGEN Create call.

INCHIGEN DATA * pGenData is created by the caller.

Data structure inchi Input * pInp Iisthe same as for Get INCHI.

Return codes

The same as for Get StdINCHI.

STDINCHIGEN_DoNormalization

int INCHI DECL STDINCHIGEN DoNormalization (INCHIGEN HANDLE

HGen,

INCHIGEN DATA * pGenData);

24

Description

Standard InChl Generator: perform structure normalization.

The entry is the “standard” counterpart of INCHIGEN DoNormalization.

STDINCHIGEN_DoCanonicalization

int INCHI DECL STDINCHIGEN DoCanonicalization
INCHIGEN_HANDLE HGen,

INCHIGEN DATA * pGenData);

Description

Standard InChl Generator: perform structure canonicalization.

The entry is the “standard” counterpart of INCHIGEN DoCanonicalization.

STDINCHIGEN_DoSerialization

int INCHI DECL STDINCHIGEN DoSerialization (
INCHIGEN HANDLE HGen,
INCHIGEN DATA * GenData,

inchi Output * pResults);

Description

Standard InChl Generator: perform InChl serialization.

The entry is the “standard” counterpart of INCHIGEN DoSerialization.

25

STDINCHIGEN_Reset

void INCHI DECL STDINCHIGEN Reset (INCHIGEN HANDLE HGen,
INCHIGEN DATA * pGenData,

inchi Output * pResults);;
Description

Standard InChl Generator: reset (use before calling STDINCHIGEN Setup(...) to start

processing the next structure and before calling STDINCHIGEN Destroy(...))

The entry is the “standard” counterpart of INCHIGEN Reset.

STDINCHIGEN_Destroy

INCHI API void INCHI DECL STDINCHIGEN Destroy

(INCHIGEN HANDLE HGen) ;

Description
Destroys the standard InChl generator object and frees associated InChl library memories.
This is the “standard” counterpart of INCHIGEN Destroy

Important: make sure STDINCHIGEN Reset(...) is called before calling

STDINCHIGEN Destroy(...).

26

Generation of InChl directly from Molfile (new in v. 1.05)

MakeINCHIFromMolfileText (new in v. 1.05)

INCHI API int INCHI DECL
MakeINCHIFromMolfileText (const char *moltext,
char *options,

inchi Output *result);
Description
This function creates InChl from Molfile supplied as a null-terminated string.

That is, it automates reading/parsing Molfile, creation of InChl input and generation of InChl
string. Notably, it relies on the same Molfile parser as inchi-1 executable thus ensuring that
any correct caller will produce the same result as inchi-1.

Input

moltext Molfile as null-terminated string

options the same options as for Get INCHIEx ()

Output

The same inchi Output data structure as for GetNCHI.

Restoring structure from InChl or AuxInfo

GetStructFromINCHI

int INCHI DECL GetStructFromINCHI (inchi InputINCHI *inpInChI,

inchi OutputStruct *outStruct);

27

Description
This function creates structure from InChl string.

Option Inchi2Struct is not needed for GetStruct FromINCHI.

Input
Data structure inchi_Inputinchi_InputINCHTI is created by the user.

For the description, see header file inchi api.h.
Output

For the description of inchi OutputStruct, see header file inchi api.h. Pointers in
inchi_OutputStruct are allocated and deallocated by InChl. inchi_OutputStruct
does not need to be initialized out to zeroes; see FreeStructFromINCHI() on how to

deallocate it.

Return codes

The same as for Get INCHT.

GetStructFromINCHIEx (new in v. 1.05)

int INCHI DECL GetStructFromINCHIEx (inchi InputINCHI *inpInChI,

inchi OutputStructEx *outStruct);
Description

This extended version of GetStruct FromINCHT supports v. 1.05 extensions: polymers and
Molfile V3000 (partial support).

Input

The same as for GetStructFromINCHTI () .

28

Output

The data structure inchi_OutputStructEx. It is a superset of inchi_OutputStruct
including additional data-substructures carrying an information on polymers and V3000
features.

Note that restoring structure from InChl for polymers does not provide information on
placement of the polymer-enclosing brackets and on textual index (‘n’ or alike), as the related

data are not embedded in InChl string.

For more details on inchi OutputStructEx data structure, please see inchi_api.h header

file in the InChl Software source code.

FreeStructFromINCHI

void INCHI DECL FreeStructFromINCHI(inchi OutputStruct *out);

Description

Should be called to deallocate pointers obtained from each GetStructFromINCHI.

GetStructFromStdINCHI

int INCHI DECL GetStructFromStdINCHI
(inchi InputINCHI *inpInChI,

inchi OutputStruct *outStruct);

Description

This is the “standard” counterpart of GetStruct FromINCHI.

Input

The same as for GetStructFromINCHT.

29

Output

The same as for GetStructFromINCHT.

Return codes

The same as for GetStructFromINCHT.

FreeStructFromStdINCHI

void INCHI DECL FreeStructFromStdINCHI (inchi OutputStruct *out)

Description

Should be called to deallocate pointers obtained from each GetStructFromINCHI.

InChiKey

GetINCHIKeyFromINCHI

int INCHI DECL GetINCHIKeyFromINCHI (const char* szINCHISource,
const int xtral,
const int xtraz,
char* szINCHIKey,
char* szXtral,

char* szXtra?2);

Description

Calculate InChlKey from InChl string.

30

Input
szINCHISource — source null-terminated InChl string.
xtral =1 calculate hash extension (up to 256 bits; 1st block)

xtra2 =1 calculate hash extension (up to 256 bits; 2nd block)

Output

szINCHIKey - InChlKey string, null-terminated. The user-supplied buffer szZINCHIKey
should be at least 28 bytes long.

szXtral- hash extension (up to 256 bits; 1st block) string. Caller should allocate space for 64

characters + trailing NULL.

szXtra2 - hash extension (up to 256 bits; 2nd block) string. Caller should allocate space for
64 characters + trailing NULL.

Return codes

Code Value Meaning

INCHIKEY OK 0 Success; no errors or warnings

INCHIKEY UNKNOWN ERROR 1 Unknown program error

INCHIKEY EMPTY INPUT 2 Source string is empty

INCHIKEY INVALID INCHI PREFIX 3 Invalid InChl prefix or invalid version
(mot 1)

INCHIKEY NOT ENOUGH MEMORY 4 Not enough memory

INCHIKEY INVALID INCHI 20 Source InChl has invalid layout

INCHIKEY INVALID STD INCHI 21 Source standard InChl has invalid
layout

31

CheckINCHIKey

int INCHI DECL CheckINCHIKey (const char *szINCHIKey)

Description

Check if the string represents valid InChlKey.

Input

szINCHIKey - source InChlKey string

Return codes

Code Value Meaning
INCHIKEY VALID STANDARD 0 InChlKey is valid and standard
-1 InChlKey is valid and non-standard

INCHIKEY VALID NON STANDARD

INCHIKEY INVALID LENGTH 1 InChiKey has invalid length
INCHIKEY INVALID LAYOUT 2 InChiKey has invalid layout
INCHIKEY INVALID VERSION 3 InChiKey has invalid version number

(not equal to 1)

GetStdINCHIKeyFromStdINCHI

int INCHI DECL GetStdINCHIKeyFromStdINCHT (

const char* szINCHISource,

char* szINCHIKey) ;

32

Description

Calculate standard InChlKey from standard InChl string.

"Standard"” counterpart of Get INCHIKeyFromINCHI.

For compatibility with v. 1.02-standard, no extra hash calculation is allowed. To calculate extra

hash(es), use Get INCHIKeyFromINCHI with stdIinChl as input.

Input

szINCHISource — source null-terminated InChl string.
Output

szINCHIKey - InChlKey string, null-terminated. The user-supplied buffer szINCHIKey
should be at least 28 bytes long.

Return codes

The same as for Get INCHIKeyFromINCHTI.

Test and utlity procedures

GetINCHIfromINCHI

int INCHI DECL GetINCHIfromINCHI (inchi InputINCHI *inpInChI,

inchi Output *out)

Description

GetINCHIfromINCHT does the same as the -InCh12InChl option: converts InChl into InChl

for validation purposes. It may also be used to filter out specific layers. For instance, SNon

33

would remove the stereochemical layer. Omitting FixedH and/or RecMet would remove

Fixed-H or Reconnected layers. Option InChI2InChT is not needed.

Notes: options are supplied in inpInChl.szOptions. Options should be preceded by /> under
Windows or ‘-° under Linux; there is no explicit tool to conversion from/to standard InChl
Input

inchi InputINCHI is created by the user.

Output

Stringsin inchi_ Output are allocated and deallocated by INChl. inchi Output does not
need to be initialized out to zeroes; see FreeINCHI () on how to deallocate it.

Return codes

Same as for Get INCHI.

CheckINCHI
int INCHI DECL CheckINCHI (const char *szINCHI, const int strict)

Description

Check if the string represents valid InChl/standard InChl.

Input

Input:

szINCHI source InChl

strict if 0, just briefly check for proper layout (prefix, version, etc.).
The result may not be strict.

If not O, try to perform InChI2InChl conversion; returns success if a resulting InChl string
exactly matches source. Be cautious: the result may be too strict, i.e. a ‘false alarm’, due to

imperfection of conversion.

34

Return codes

Code

INCHI VALID STANDARD
INCHI VALID NON STANDARD
INCHI INVALID PREFIX

INCHI INVALID VERSION

INCHI INVALID LAYOUT

INCHI FAIL I2T

GetStringLength

Value

Meaning

InChl is valid and standard
InChl is valid and non-standard
InChl has invalid prefix

InChl has invalid version number (not

equal to 1)
InChl has invalid layout

Checking InChl through InChl2InChl
either failed or produced a result which

does not match the source InChl string

int INCHI DECL GetStringLength(char *p)

Description

Returns string length.

InChl Extensible APl = IXA (new in v. 1.05)

The InChl Extensible API provides an alternative access to all the functionality in the original

API. The primary purpose of the IXA is to ensure complete separation of the interface to the

underlying InChl generation code from the implementation of that code. This will permit

changes to be made to the implementation, as well as development and extension of the InChl

code to handle new types of structure, without affecting the interface, or user code which is

dependent on that interface.

35

The IXA provides both low-level and high-level means of specifying molecules. The low level
approach involves specifying the individual atoms and bonds and their properties, in a series of
calls to separate functions. The high level approach specifies a complete molecule in a single
call which reads, for example, an MDL Molfile, or an InChl.

IXA is defined in the 1SO standard C language and is based on the use of several different
Obiject types, which are accessed by means of “Handles”. Each function in the XA operates on

one or more of these Objects.

The Objects defined in the 1XA are as follows:

* Status Objects, containing error and warning messages

* Molecule Objects, containing representations of molecules or other chemical entities
* InChI Builder Objects, used to construct InChl strings

* InChIKey Builder Objects, used to construct InChiKeys

The Handle for each of variety of Object has its own C type, which ensures that the Handles
for different varieties of Object cannot be confused or interchanged. Functions are provided for
the creation and destruction of Objects, as well as for modifying and manipulating them in
various ways, and these functions are responsible for all allocation and freeing of memory used
by the Objects.

The details of Objects and related functions are as follow.

Status Objects

IXA Status Objects are used to accumulate error and warning messages generated by the
functions in the IXA. Most functions in the IXA require the Handle for an IXA Status Object
to be passed as a parameter; any error or warning messages generated by the function are then
stored in the IXA Status Object.

IXA Status Objects can be interrogated to discover how many messages they have accumulated,
the severity of those messages (error or warning), and of course, to obtain the text of each
individual message. A function is also provided to clear all messages in the IXXA Status Object.

36

Generally, a user program will start by creating an XA Status Object, and will then pass its
Handle to all subsequent IXA function calls, checking for messages after each call or group of
calls to ensure that they have been successful. As a general principle, the value returned by an
IXA function should not be used to determine whether or not an error has occurred — the
documentation for each function generally notes the value that is returned on error, though in

many cases this value can also be returned when no error has occurred.

Types and Constants

IXA Status Object Handles have type IXA STATUS HANDLE.

The severity of a status message is given in variables of type IXA STATUS, which has

« IXA STATUS SUCCESS: An operation was successful, and generated no messages.

« IXA STATUS WARNING: An operation was successful, but generated a warning message.
« IXA STATUS ERROR: An operation failed with an error message.

Some functions take Boolean (TRUE / FALSE) parameters, or return Boolean values expressed

using the special type IXA BOOL, which has the following enumerated constants:
* IXA FALSE

* IXA TRUE.

Functions

IXA_STATUS_ Create

IXA STATUS HANDLE IXA STATUS Create ();

Description

Creates a new XA Status Object and returns its Handle.

37

Input

None

Output

Handle for the newly-created XA Status Object.

IXA_STATUS_Clear

void IXA STATUS Clear (IXA STATUS HANDLE hStatus);

Description

Clears all messages held by an I)XA Status Object.

Input

hStatus: Handle for the IXA Status Object to be cleared.

IXA_STATUS_Destroy

void IXA STATUS Destroy (IXA STATUS HANDLE hStatus);

Description

Destroys an IXA Status Object, releasing all memory that it uses.

Input

hStatus: Handle for the IXA Status Object to be destroyed.

IXA_STATUS HasError

IXA BOOL IXA STATUS HasError (IXA STATUS HANDLE hStatus);

38

Description

Returns IXA TRUE if an [IXA Status Object holds a message with severity

IXA STATUS ERROR.

Input

hStatus: Handle for the XA Status Object to be examined.

Output
IXA TRUE if the IXA Status Object holds a message with severity IXA STATUS ERROR,

IXA FALSE if it does not, or if hStatus is invalid.

XA_STATUS HasWarning
IXA BOOL IXA STATUS HasWarning (IXA STATUS HANDLE hStatus);

Description

Returns IXA TRUE if an IXA Status Object holds a message with severity

IXA STATUS WARNING.

Input

hStatus: Handle for the XA Status Object to be examined.

Output

IXA TRUE if the XA Status Object holds a message with severity IXA STATUS WARNING;

IXA FALSE ifitdoes not, or if hStatus is invalid.

IXA_STATUS_GetCount

int IXA STATUS GetCount (IXA STATUS HANDLE hStatus);

39

Description

Returns the total number of status messages held by an XA Status Object.

Input

hStatus: Handle for the XA Status Object to be examined.

Output

The total number of status messages held by the XA Status Object, or zero if hStatus is

invalid.

IXA_STATUS_ GetSeverity

IXA STATUS IXA STATUS GetSeverity (IXA STATUS HANDLE hStatus,

int vIndex);

Description

Returns the severity of a status message held by an I)XA Status Object.

Input
hStatus: Handle for the IXA Status Object to be examined.

vIndex Index number (from zero) of the status message to be examined.

Output
Severity of the specified status message in the XA Status Object. IXA STATUS ERROR if

hStatus is invalid or vindex is out of range.

IXA_STATUS_GetMessage

const char* IXA STATUS GetMessage (IXA STATUS HANDLE hStatus,

40

int vIndex):;

Description

Returns the text of a status message held by an XA Status Object.

Input
hStatus: Handle for the XA Status Object to be examined.

vIndex: Index number (from zero) of the status message to be returned.

Output

Text of the specified status message in the XA Status Object, or NULL if hStatus isinvalid
or vindex is out of range. The returned string is null-terminated and is owned by the IXA Status

Object, and must be copied by the user if it is to be retained.

Molecule Objects

IXA Molecule Objects are used to represent molecules, with their constituent atoms, bonds and

stereo descriptors.

IXA Molecule Objects are initially created empty, and can be populated either in single function
calls (for example by reading a Molfile or an InCHI), or by successively adding individual
atoms, bonds and stereodescriptors, and specifying their properties, in separate function calls.
Functions are also provided to return information about the atoms, bonds and stereodescriptors
in an IXXA Molecule Object.

Within an IXXA Molecule Object, each individual atom, bond or stereodescriptor has a unique

Identifier, which like the Handles for the main IXA Objects, have their own C types.

Stereochemistry

Two mechanisms are provided for the representation of stereochemistry in XA Molecule
Objects.

41

The first of these allows specification of special stereochemical properties for individual bonds
within an XA Molecule Object — “up” and “down” wedges etc. on single bonds, and an
indication as to whether or not the X/Y coordinates of atoms around double bonds should be
used to determine their configuration. This mechanism is dependent on appropriate coordinates
being specified for the atoms, and even then it is possible for ambiguous or self-contradictory

configurations to be specified using it; it is meaningless if 2D coordinates are not available.

The second mechanism uses a separate stereodescriptor, with its own XA Identifier, for each
stereocentre. The stereodescriptor specifies the topology involved, identifies the central atom
or bond, lists the vertices that surround it and specifies the “parity” for the stereocentre. This
type of stereodescriptor is the only way of specifying stereochemistry within IXA Molecule
Objects if coordinates are not available, and is used for XA Molecule Objects populated from
InChls (which do not record coordinates).

Types and Constants

IXA Molecule Object Handles have type IXA MOL HANDLE.

IXA Atom Identifiers have type IXA ATOMID and there are two special constants of this type.
IXA ATOMID INVALID isthe Identifier for an invalid atom within an XA Molecule Object,
and is the wvalue returned Dby some functions when a error occurs.
IXA ATOMID IMPLICIT H is the Identifier for an implicit hydrogen atom attached to
another atom, and is the value used to specify implicit hydrogen atoms when specifying
stereocentres.

Atom radical states are specified by constants of type IXA ATOM RADICAL with possible

values:

« IXA ATOM RADICAL NONE: The atom is not a radical.

« IXA ATOM RADICAL SINGLET: The atom is a singlet radical.
« IXA ATOM RADICAL DOUBLET: The atom is a doublet radical.

« IXA ATOM RADICAL TRIPLET: The atom is a triplet radical.

42

IXA Bond ldentifiers have type IXA BONDID; IXA BONDID INVALID is a special
constant of type IXA BONDID, and is the Identifier for an invalid bond within an IXA

Molecule Object; it is the value returned by some functions when an error occurs.

Bond types within IXA Molecule Objects have type IXA BOND TYPE with possible values:

+ IXA BOND TYPE SINGLE: The bond is a single bond.

« IXA BOND TYPE DOUBLE: The bond is a double bond.

« IXA BOND TYPE TRIPLE: The bond is atriple bond.

* IXA BOND_ TYPE AROMATIC: The bond is an “aromatic” bond.

As part of the InChl generation process, aromatic bonds are replaced by patterns of single and
double bonds; where this cannot be done, appropriate error or warning messages may be issued.
Where single-bond stereochemistry is indicated by “wedge bonds”, the wedge direction is

shown by a bond property of type IXA BOND WEDGE with possible values:

« IXA BOND WEDGE NONE: The bond has no wedge property; this is the default value

where no stereochemistry is involved.
+ IXA BOND WEDGE UP: The wedge points “up” from the reference atom.
* IXA BOND WEDGE DOWN: The wedge points “down” from the reference atom.

*+ IXA BOND WEDGE EITHER: The wedge can point either “up” or “down” from the

reference atom.

The stereochemical configuration for double bonds is specified by a bond property of type

IXA DBLBOND CONFIG with possible values:

+ IXA DBLBOND CONFIG PERCEIVE: The configuration (if any) should be perceived

from the X and Y coordinates of the atoms joined by the bond and their neighbours.
« IXA DBLBOND CONFIG_EITHER: The bond can be in either configuration.

IXA Stereodescriptor Identifiers have type IXA STEREOID; IXA STEREOID INVALID
is a special constant of type IXA STEREOID and is the Identifier for an invalid
stereodescriptor within an IXA Molecule Object; it is the value returned by some functions

when an error occurs.

43

The topology described by an IXA Stereodescriptor is specified by constants of type
IXA STEREO TOPOLOGY with possible values:

+ IXA STEREO TOPOLOGY TETRAHEDRON: The atoms around a central atom are

arranged in a tetrahedron — e.g. sp® carbon.

+ IXA STEREO TOPOLOGY RECTANGLE: The atoms around a central bond are arranged

in a rectangle — e.g. olefins, and cumulenes.

* IXA STEREO TOPOLOGY ANTIRECTANGLE: The atoms around a central atom are

arranged in an anti-rectangle — e.g. allenes.
« IXA STEREO TOPOLOGY INVALID: Used as a return value in case of errors.

The stereo parity described by an IXA Stereodescriptor is specified by constants of type

IXA STEREO PARITY with possible values:

« IXA STEREO_ PARITY NONE: No parity value is defined for the stereocentre.

IXA STEREO PARITY ODD: The stereocentre has odd parity.

IXA STEREO PARITY EVEN: The stereocentre has even parity.

IXA STEREO_ PARITY UNKNOWN: The parity of the stereocentre is unknown.

Functions to Create, Clear and Destroy Molecule Objects

IXA_MOL_Create
IXA MOL HANDLE IXA MOL Create (IXA STATUS HANDLE hStatus);

Description

Creates a new empty XA Molecule Object and returns its Handle.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

44

Output

Handle for the newly-created XA Molecule Object.

IXA_MOL_Clear

void IXA MOL Clear (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule) ;

Description

Clears all data in an IXXA Molecule Object, returning it to an empty state as when newly created.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be cleared.

IXA_MOL_Destroy

void IXA MOL Destroy (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule) ;

Description

Destroys an XA Molecule Object, releasing all memory that it uses.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be destroyed.

45

Functions Operating on Complete Molecules
These functions operate on IXA Molecule Objects at “high level”, and do not require access to
individual atoms, bonds and stereodescriptors.

IXA_MOL_ReadMolfile

void IXA MOL ReadMolfile (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

const char* pMolfile);

Description

Populates an IXXA Molecule Object with data from an MDL Molfile representation. Any data
previously held in the IXXA Molecule Object are over-written.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule Handle for the XA Molecule Object to be populated.

pMolfile Null-terminated character array containing the text of the Molfile. Reading
continues until the syntactic end of the Molfile is reached, or until a null character is reached,

whichever occurs first.

IXA_MOL_ReadInChl

void IXA MOL ReadInChI (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

const char* pInChI);

Description
Populates an IXXA Molecule Object with data from an InChl string representation. Any data

previously held in the IXXA Molecule Object are over-written.

46

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule Handle for the IXA Molecule Object to be populated.

pInChI Null-terminated character array containing the an InChl string. Reading continues
until the syntactic end of the InChl is reached, or until a null character is reached, whichever

occurs first.
Output

Nothing

IXA_MOL_SetChiral

void IXA MOL SetChiral (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA BOOL vChiral);

Description

Sets the chiral flag for an IXA Molecule Object. If the non-standard InChl generation option
IXA INCHIBUILDER STEREOOPTION SUCF is specified, the chiral flag is used to

determine how stereochemistry in the IXXA Molecule Object should be interpreted.
Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.

vChiral: Value to be used for the chiral flag (IXA TRUE = molecule is chiral; IXA FALSE

= molecule is not chiral).
Output

Nothing

47

IXA_MOL_GetChiral

IXA BOOL IXA MOL GetChiral (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule);

Description

Returns the value of the chiral flag for an IXXA Molecule Object. If the non-standard InChl
generation option IXA INCHIBUILDER STEREOOPTION SUCF is specified, the chiral
flag is used to determine how stereochemistry in the IXA Molecule Object should be

interpreted.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the XA Molecule Object to be examined.

Output

Value of chiral flag (IXA TRUE = molecule is chiral; IXA FALSE = molecule is not chiral).

Functions to Add and Define Atoms

When an individual atom is created in an XA Molecule Obiject, it has a set of default properties
(carbon with IXA ATOM NATURAL MASS, radical state IXA ATOM RADICAL NONE,
zero for all numerical properties other than atomic number, and no bonds to other atoms) which

can then be modified if required.

IXA_MOL_CreateAtom

IXA ATOMID IXA MOL CreateAtom (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule) ;

48

Description

Adds one atom to an IXA Molecule Object, and returns its XA Atom Identifier. The atom is
set to be a carbon atom with mass IXA ATOM NATURAL MASS, and no bonds to other atoms.
Its radical state is set to IXA ATOM RADICAL NONE, and all its numerical properties (other
than atomic number) are set to zero.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the XA Molecule Object to be modified.

Output

IXA Atom Identifier for the newly-created atom, or IXA ATOMID INVALID ON error.

IXA_MOL_SetAtomElement

void IXA MOL SetAtomElement (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

const char* pElement);

Description
Sets the element type for an atom in an 1XA Molecule Object. The element type can also be set

by function IXXA_MOL_SetAtomAtomicNumber.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.

vAtom: IXA Atom Identifier for the atom to be modified.

49

pElement: Null-terminated character string containing the IUPAC element symbol to be used

for the specified atom. All IUPAC-approved two-letter symbols up to the element 118.

IXA_MOL_SetAtomAtomicNumber

void IXA MOL SetAtomAtomicNumber (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

int vAtomicNumber) ;

Description

Sets the atomic number for an atom in an IXA Molecule Object. The atomic humber can also
be set by function IXA MOL SetAtomElement.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the XA Molecule Object to be modified.

vAtom: IXA Atom Identifier for the atom to be modified.

vAtomicNumber: The atomic number to be used for the specified atom. Valid values are in

the range 1-118 inclusive.

IXA_MOL_SetAtomMass

void IXA MOL SetAtomMass (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

int vMassNumber) ;

50

Description

Sets the mass number for an atom in an XA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vAtom: IXA Atom Identifier for the atom to be modified.

vMassNumber: The mass number to be used for the specified atom. The constant
IXA ATOM NATURAL MASS may be used to specify the naturally-abundant mixture of

masses, which is the default.

IXA_MOL_SetAtomCharge

void IXA MOL SetAtomCharge (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

int vCharge);

Description

Sets the formal charge on an atom in an IXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule Handle for the IXA Molecule Object to be modified.

vAtom IXA Atom Identifier for the atom to be modified.

vCharge The charge to be used for the specified atom. No constraints are imposed on the

permitted range of values.

o1

IXA_MOL_SetAtomRadical

void IXA MOL SetAtomRadical (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

IXA ATOM RADICAL vRadical);

Description

Sets the radical state for an atom in an IXXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be modified.
vAtom: IXA Atom Identifier for the atom to be modified.

vRadical: The radical state constant to be used for the specified atom.

IXA_MOL_SetAtomHydrogens

void IXA MOL SetAtomHydrogens (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,
int vHydrogenMassNumber,

int vHydrogenCount) ;

Description
Sets the number and mass of hydrogen atoms attached to an atom in an I)XXA Molecule Object.

Multiple calls to this function are permitted to set counts for different hydrogen isotopes

attached to the same atom.

52

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vAtom: IXA Atom Identifier for the atom to be modified.

vHydrogenMassNumber: The mass number of the attached hydrogen atoms (in the range
1-3).

vHydrogenCount: The number of hydrogen atoms of the specified mass which are

to be attached to the specified atom.

IXA_MOL_SetAtomX

void IXA MOL SetAtomX (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

double vX);

Description

Sets the x-coordinate for an atom in an IXXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vAtom: IXA Atom Identifier for the atom to be modified.

vX: X-coordinate to be set.

53

IXA_MOL_SetAtomY

void IXA MOL SetAtomY (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

double vVvY);

Description

Sets the y-coordinate for an atom in an IXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be modified.
vAtom: IXA Atom Identifier for the atom to be modified.

vY: y-coordinate to be set.

IXA_MOL_SetAtomZ

void IXA MOL SetAtomZ (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

double vZ);

Description

Sets the z-coordinate for an atom in an IXXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be modified.

54

vAtom: IXA Atom Identifier for the atom to be modified.

vZ: z-coordinate to be set.

Functions to Add and Define Bonds

When an individual bond is created in XA Molecule Objects, it has a set of default properties
(IXA BOND TYPE SINGLE with wedge direction IXA BOND WEDGE NONE with respect

to both its atoms) which can then be modified if required.

IXA_MOL_CreateBond

IXA BONDID IXA MOL CreateBond (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtoml,

IXA ATOMID vAtom2) ;

Description

Creates a new bond between the specified atoms in an IXA Molecule Object, and returns its
IXA Bond Identifier. By default, the bond created has bond type IXA_BOND_TYPE_SINGLE
and its wedge direction is IXA_BOND_WEDGE_NONE. In the event that it is changed to a
double bond, its double bond configuration is IXA_DBLBOND_CONFIG_PERCEIVE.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vAtoml: IXA Atom ldentifier for the atom at one end of the new bond.

vAtom2: IXA Atom Identifier for the atom at the other end of the new bond.

55

Output

The IXA Bond Identifier for the new bond, or IXA BONDID INVALID 0N €rror.

IXA_MOL_SetBondType

void IXA MOL SetBondType (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA BONDID vBond,

IXA BOND TYPE vType);

Description

Sets the bond type for a bond in an XA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vBond: IXA Bond Identifier for the bond to be modified.

vType: The bond type to be used for the specified bond.

IXA_MOL_SetBondWedge

void IXA MOL SetBondWedge (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA BONDID vBond,
IXA ATOMID vRefAtom,

IXA BOND WEDGE vDirection);

56

Description

Sets the wedge direction for a single bond in an IXXA Molecule Object with respect to a specified
atom. This property is only relevant for IXA_BOND_TYPE_SINGLE bonds. Note that wedge
direction is associated with the reference atom only; setting a wedge direction for a bond with
respect to one atom does not set a wedge direction for the same bond with respect to its other
atom.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be modified.

vBond: IXA Bond Identifier for the bond to be modified.

vRefAtom: IXA Atom ldentifier for the reference atom, at one end of the specified bond.

vDirection: The wedge direction to be used for the specified bond with respect to the

specified atom.

IXA_MOL_SetDblBondConfig

void IXA MOL SetDblBondConfig (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA BONDID vBond,

IXA DBLBOND CONFIG vConfig);

Description

Sets the stereo configuration for a double bond in an IXA Molecule Object. This property is

only relevant for IXA BOND TYPE DOUBLE bonds.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

57

hMolecule: Handle for the IXA Molecule Object to be modified.
vBond: IXA Bond ldentifier for the bond to be modified.

vConfig: The bond configuration to be used for the specified bond.

Functions to Add and Define Stereodescriptors

Each individual stereodescriptor in an XA Molecule Object describes the configuration at a
single stereocentre. This is done by specifying the geometry of the stereocentre, the central
atom or bond, and the vertices which surround it. Separate creation functions are provided for
each geometry, as the number of vertices involved may vary between geometries. Where one
of the vertices to be specified is an “implicit hydrogen” with no IXA Atom Identifier of its own,
the constant IXA_ATOMID_IMPLICIT_H should be used.

IXA_MOL_CreateStereoTetrahedron

IXA STEREOID IXA MOL CreateStereoTetrahedron
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vCentralAtom,
IXA ATOMID vVertexl,
IXA ATOMID vVertexZ2,
IXA ATOMID vVertex3,

IXA ATOMID vVertex4)

Description

Creates a new stereodescriptor for a tetrahedral stereocentre in an XA Molecule Object, and

returns its Identifier. The parity for the new stereodescriptor is set to

58

IXA MOL STEREOPARITY NONE on creation and can be modified by function

IXA MOL SetStereoParity

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vCentralAtom: IXA Atom Identifier for the central atom of the stereocentre.

vVertex1: IXA Atom Identifier (or IXA_ATOMID_IMPLICIT_H) for the first vertex

attached to the stereocentre.

vVertex2: IXA Atom Identifier (or IXA_ATOMID_IMPLICIT_H) for the second vertex

attached to the stereocentre.

vVertex3: IXA Atom Identifier (or IXA_ATOMID_IMPLICIT_H) for the third vertex

attached to the stereocentre.

vVertex4: IXA Atom Identifier (or IXA_ATOMID_IMPLICIT_H) for the fourth vertex
attached to the stereocentre.

Output

IXA Stereodescriptor Identifier for the new stereocentre.

IXA_MOL_CreateStereoRectangle

IXA STEREOID IXA MOL CreateStereoRectangle
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA BONDID vCentralBond,
IXA ATOMID vVertexl,

IXA ATOMID vVertex2,

59

IXA ATOMID vVertex3,

IXA ATOMID vVertex4)

Description

Creates a new stereodescriptor for a rectangular stereocentre (e.g. olefin or cumulene) in an
IXA Molecule Object, and returns its Identifier. The parity for the new stereodescriptor is set
to IXA MOL STEREOPARITY NONE on creation and can be modified by function

IXA MOL SetStereoParity

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vCentralBond: IXA Bond Identifier for the central bond of the stereocentre.

vVertexl: IXA Atom Identifier (or IXA ATOMID IMPLICIT H) for the first vertex

attached to the stereocentre.

vVertex2: XA Atom Identifier (or IXA ATOMID IMPLICIT_ H) for the second vertex

attached to the stereocentre.

vVertex3: XA Atom Identifier (or IXA ATOMID IMPLICIT H) for the third vertex

attached to the stereocentre.

vVertex4: XA Atom Identifier (or IXA ATOMID IMPLICIT H) for the fourth vertex
attached to the stereocentre.

Output

IXA Stereodescriptor Identifier for the new stereocentre.

Note:

In the case of olefins, the stereocentre consists of a double bond, which should be specified as
vCentralBond. The four atoms that have bonds to the atoms at either end of
vCentralBond should be specified as the four vertices (two at each end of the double bond).

In the case of cumulenes, the stereocentre consists of three consecutive double bonds; the

60

central one of these should be specified as vCentralBond. The four atoms that have bonds
to the atoms at either end of the cumulated system should be specified as the four vertices (two
at each end). In neither case should the atoms involved in any of the double bonds be specified

as vertices.

IXA_MOL_CreateStereoAntiRectangle

IXA STEREOID IXA MOL CreateStereoAntiRectangle
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vCentralAtom,
IXA ATOMID vVertexl,
IXA ATOMID vVertexZ,
IXA ATOMID vVertex3,

IXA ATOMID vVertex4)

Description

Creates a new stereodescriptor for an anti-rectangular stereocentre (e.g. allenic) in an XA
Molecule Object, and returns its Identifier. The parity for the new stereodescriptor is set to
IXA MOL STEREOPARITY NONE on creation and can be modified by function

IXA MOL SetStereoParity

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be modified.
vCentralAtom: IXA Atom Identifier for the central atom of the stereocentre.

vVertexl: IXA Atom ldentifier (or IXA ATOMID IMPLICIT H) for the first vertex

attached to the stereocentre.

61

vVertex2: XA Atom ldentifier (or IXA ATOMID IMPLICIT H) for the second vertex

attached to the stereocentre.

vVertex3: IXA Atom Identifier (or IXA ATOMID IMPLICIT H) for the third vertex

attached to the stereocentre.

vVertex4: IXA Atom Identifier (or IXA ATOMID IMPLICIT H) for the fourth vertex
attached to the stereocentre.

Output

IXA Stereodescriptor Identifier for the new stereocentre.

Note:

In allenes, the stereocentre consists of two consecutive double bonds; the atom between them
should be specified as vCentralAtom. The four atoms that have bonds to the atoms at either
end of the system should be specified as the four vertices (two at each end). The atoms involved
in the double bonds themselves should not be specified as vertices.

IXA_MOL_SetStereoParity

void IXA MOL SetStereoParity (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA STEREOID vStereo,

IXA STEREO PARITY vParity);

Description

Sets the parity for a stereodescriptor (specified by an XA Stereodescriptor Identifier) in an XA
Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be modified.

vStereo: IXA Stereodescriptor Identifier for the stereodescriptor to be modified.

62

vParity: The parity value to be used for the specified stereodescriptor in the specified

molecule.

Functions to Navigate Within a Molecule

The functions described in this section return information about which atoms are connected by

which bonds in an IXXA Molecule Object, and allow navigation within it.

IXA_MOL_GetNumAtoms

int IXA MOL GetNumAtoms (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule) ;

Description

Returns the number of atoms in an XA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be examined.

Output

Total number of atoms (not counting implicit hydrogens) in the XA Molecule Object, or zero

on error.

IXA_MOL_GetNumBonds

int IXA MOL GetNumBonds (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule);

Description

Returns the total number of bonds in an XA Molecule Object.

63

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be examined.

Output

The total number of bonds in the IXXA Molecule Object, or zero on error.

IXA_MOL_GetAtomlid

IXA ATOMID IXA MOL GetAtomId (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

int vAtomIndex);

Description

Returns the XA Atom Identifier for an atom in an XXA Molecule Object. This function provides
a means for obtaining the IXA Atom Identifier for an atom, given its sequential index within
the IXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vAtomIndex: Index (from zero) of an atom in the XA Molecule Object.

Output

IXA Atom Identifier for the specified atom in the specified XA Molecule Object, or

IXA ATOMID INVALID on error.

IXA_MOL_GetBondld

IXA BONDID IXA MOL GetBondId(IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule,

64

int vBondIndex) ;

Description

Returns the XA Bond Identifier for a bond in an IXA Molecule Object. This function provides

a means for obtaining the XA Bond Identifier for a bond, given its sequential index within the

IXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vBondIndex: Index (from zero) of a bond in the XA Molecule Object.

Output

IXA Bond Identifier for the specified bond in the specified Molecule,

IXA BONDID INVALID on error.

IXA_MOL_GetAtomIndex

int IXA MOL GetAtomIndex (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

or

Returns the index (from zero) for an atom (specified by IXA Atom Identifier) in an XA

Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: IXA Atom Identifier for an atom in the XA Molecule Object.

65

Output

The index (from zero) of the specified atom in the specified IXA Molecule Object, or zero on

error.

IXA_MOL_GetBondIndex

int IXA MOL GetBondIndex (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA BONDID vBond) ;

Description

Returns the index (from zero) for a bond (specified by an IXA Bond Identifier) in an IXA
Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vBond: IXA Bond Identifier for a bond in the XA Molecule Object.

Output

The index (from zero) of the specified bond in the specified molecule, or zero on error.

IXA_MOL_GetAtomNumBonds

int IXA MOL GetAtomNumBonds (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the number of bonds attached to an atom in an IXA Molecule Object.

66

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: IXA Atom Identifier for the atom to be examined.

Output

The number of bonds attached to the specified atom, or zero on error.

IXA_MOL_GetAtomBond

IXA BONDID IXA MOL GetAtomBond (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

int vBondIndex) ;

Description

Returns the I XA Bond ldentifier for one of the bonds attached to an atom in an I XA Molecule
Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: XA Atom ldentifier for the atom to be examined.

vBondIndex: The index (in the range zero to one less that the number of bonds attached to

vAtom — i.e. the value returned by IXA MOL_GetAtomNumBonds) for the bond whose

Identifier is to be returned.
Output

The IXA Bond Identifier for the specified bond, or IXA BONDID INVALID 0N error.

67

IXA_MOL_GetCommonBond

IXA BONDID IXA MOL GetCommonBond (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtoml,

IXA ATOMID vAtom2) ;

Description

Returns the IXA Bond ldentifier for the bond which joins two atoms in an IXA Molecule
Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.
vAtoml: IXA Atom ldentifier for the atom at one end of the bond.

vAtom2: IXA Atom ldentifier for the atom at the other end of the bond.

Output

The IXA Bond Identifier for the bond which joins the two atoms, or IXA_BONDID_INVALID

if no such bond exists, or on error.

IXA_MOL_GetBondAtoml

IXA ATOMID IXA MOL GetBondAtoml (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA BONDID vBond) ;

Description

Returns the IXA Atom ldentifier for the first atom involved in a specified bond in an IXA

Molecule Object.

68

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vBond: IXA Bond Identifier for a bond in the IXXA Molecule Object.

Output

IXA Atom Identifier for the first atom involved in the specified bond,

IXA ATOMID INVALID oOn error.

IXA_MOL_GetBondAtom2

IXA ATOMID IXA MOL GetBondAtom2 (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA BONDID vBond) ;

Description

or

Returns the IXA Atom ldentifier for the second atom involved in a specified bond in an IXA

Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vBond: IXA Bond Identifier for a bond in the IXXA Molecule Object.

Output

IXA Atom Identifier for the second atom involved in the specified bond,

IXA ATOMID INVALID On error.

69

or

Functions to Return Information About Atoms

IXA_MOL_GetAtomElement

const char* IXA MOL GetAtomElement (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the element type for an atom in an XA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vAtom: IXA Atom Identifier for the atom to be examined.

Output

The IUPAC element symbol for the specified atom, or NULL on error. The returned string is

owned by the IXA Molecule Object, and must be copied by the user if it is to be retained.

IXA_MOL_GetAtomAtomicNumber

int IXA MOL GetAtomAtomicNumber (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the atomic number for an atom in an IXXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

70

hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: XA Atom Identifier for the atom to be examined.

Output

The atomic number for the specified atom, or zero on error.

IXA_MOL_GetAtomMass

int IXA MOL GetAtomMass (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the mass number for an atom in an IXXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vAtom: IXA Atom Identifier for the atom to be examined.

Output

The mass number for the specified atom. The constant IXA ATOM NATURAL MASS indicates

the naturally-abundant mixture of masses, and zero is returned on error.

IXA_MOL_GetAtomCharge

int IXA MOL GetAtomCharge (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

71

Description

Returns the formal charge on an atom in an IXXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: XA Atom Identifier for the atom to be examined.

Output

The formal charge on the specified atom, or zero on error.

IXA_MOL_GetAtomRadical

IXA ATOM RADICAL IXA MOL GetAtomRadical
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the radical state of an atom in an XA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: IXA Atom Identifier for the atom to be examined.

Output

The radical state constant value for the specified atom, or IXA ATOM RADICAL NONE 0N

error.

72

IXA_MOL_GetAtomHydrogens

int IXA MOL GetAtomHydrogens (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA ATOMID vAtom,

int vHydrogenMassNumber) ;

Description

Returns the number of hydrogen atoms of a specified mass which are attached to an atom in an
IXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.
vAtom: IXA Atom Identifier for the atom to be examined.

vHydrogenMassNumber: The mass number for the hydrogen atoms of interest (in the range
1-3).

Output

The number of hydrogen atoms of the specified mass which are attached to the specified atom,

Oor zero on error.

IXA_MOL_GetAtomX

double IXA MOL GetAtomX (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the x-coordinate for an atom in an IXXA Molecule Object.

73

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: IXA Atom Identifier for the atom to be examined.

Output

x-coordinate for the specified atom, or zero on error.

IXA_MOL_GetAtomY

double IXA MOL GetAtomY (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the y-coordinate for an atom in an IXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vAtom: IXA Atom Identifier for the atom to be examined.

Output

y-coordinate for the specified atom, or zero on error.

IXA_MOL_GetAtomZ

double IXA MOL GetAtomZ (IXA STATUS HANDLE hStatus,

74

IXA MOL HANDLE hMolecule,

IXA ATOMID vAtom) ;

Description

Returns the z-coordinate for an atom in an IXXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vAtom: XA Atom Identifier for the atom to be examined.

Output

z-coordinate for the specified atom, or zero on error.

Functions to Return Information About Bonds

IXA_MOL_GetBondType

IXA BOND TYPE IXA MOL GetBondType (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA BONDID vBond) ;

Description

Returns the bond type for a bond in an I’XXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be examined.

75

vBond: IXA Bond Identifier for the bond to be examined.

Output

The bond type for the specified bond, or IXA BOND TYPE SINGLE On error.

IXA_MOL_GetBondWedge

IXA BOND WEDGE IXA MOL GetBondWedge (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA BONDID vBond,

IXA ATOMID vRefAtom) ;

Description

Returns the wedge direction for a bond in an IXXA Molecule Object with respect to a specified
atom. Note that the wedge direction is defined only for the reference atom; i.e. if this function
is called on the atoms at both ends of a bond, the fact that it returns IXA BOND WEDGE_UP

for one atom does not imply that it will return IXA BOND WEDGE_DOWN for the other.
Input

hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the XA Molecule Object to be examined.

vBond: IXA Bond Identifier for the bond to be examined.

vRefAtom: IXA Atom ldentifier for the reference atom, at one end of the specified bond.

Output

The wedge direction for the specified bond from the specified atom.

76

IXA_MOL_GetDbIBondConfig

IXA DBLBOND CONFIG IXA MOL GetDblBondConfig
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA BONDID vBond) ;

Description

Returns the stereo configuration for a double bond in an IXXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vBond: IXA Bond ldentifier for the bond to be examined.

Output

The double bond configuration for the specified bond.

Functions to Return Information About Stereodescriptors

IXA_MOL_GetNumStereos

int IXA MOL GetNumStereos (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule) ;

Description

Returns the total number of stereodescriptors in an XA Molecule Object.

77

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hMolecule: Handle for the IXA Molecule Object to be examined.

Output

The total number of stereodescriptors in the IXXA Molecule Object.

IXA_MOL_GetStereold

IXA STEREOID IXA MOL GetStereoId (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

int vStereoIndex):;

Description

Returns the 1XA Stereodescriptor Identifier for a stereodescriptor in an IXA Molecule Object.
This function provides a means for obtaining the IXA Stereodescriptor Identifier for a

stereodescriptor, given its sequential index within the IXXA Molecule Object.
Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vStereoIndex: Index (from zero) of a stereodescriptor in the IXA Molecule Object.

Output

IXA Stereodescriptor Identifier for the specified stereodescriptor in the specified XA Molecule

Object, or IXA STEREOID_ INVALID 0N €rror.

IXA_MOL_GetStereolndex

int IXA MOL GetStereoIndex (IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule,

78

IXA STEREOID vStereo);

Description

Returns the index (from zero) for a stereodescriptor (specified by an IXA Stereodescriptor
Identifier) in an XA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vStereo: IXA Stereodescriptor Identifier for a stereodescriptor in the IXXA Molecule Object.

Output

The index (from zero) of the specified stereodescriptor in the specified molecule, or zero on

error.

IXA_MOL_GetStereoTopology

IXA STEREO TOPOLOGY IXA MOL GetStereoTopology
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA STEREOID vStereo);

Description

Returns the topology of a stereodescriptor (specified by an I)XA Stereodescriptor Identifier) in
an IXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vStereo: IXA Stereodescriptor Identifier for a stereodescriptor in the XA Molecule Object.

79

Output

The topology of the specified stereodescriptor in the specified molecule, or

IXA MOL STEREOTOPOLOGY INVALID On error.

IXA_MOL_GetStereoCentralAtom

IXA ATOMID IXA MOL GetStereoCentralAtom
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA STEREOID vStereo);

Description

Returns the IXA Atom ldentifier for the central atom of a stereodescriptor (specified by an IXA
Stereodescriptor Identifier) in an IXXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vStereo: IXA Stereodescriptor Identifier for the stereodescriptor to be examined.

Output

IXA Atom Identifier for the central atom of the specified stereodescriptor in the specified XA

Molecule Object, or IXA ATOMID INVALID ON error.

IXA_MOL_GetStereoCentralBond

IXA BONDID IXA MOL GetStereoCentralBond
(IXA STATUS HANDLE hStatus,

IXA MOL HANDLE hMolecule,

80

IXA STEREOID vStereo);

Description

Returns the XA Bond Identifier for the central bond of a stereodescriptor (specified by an IXA

Stereodescriptor Identifier) in an IXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vStereo: IXA Stereodescriptor Identifier for the stereodescriptor to be examined.

Output

IXA Bond Identifier for the central bond of the specified stereodescriptor in the specified IXA

Molecule Object, or IXA BONDID INVALID 0N error.

IXA_MOL_GetStereoNumVertices

int IXA MOL GetStereoNumVertices (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA STEREOID vStereo);

Description

Returns the number of vertices involved in a stereodescriptor (specified by an IXA

Stereodescriptor Identifier) in an IXXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vStereo: IXA Stereodescriptor Identifier for a stereodescriptor in the XA Molecule Object.

81

Output

The number of vertices involved in the specified stereodescriptor in the specified XA Molecule

Object, or zero on error.

IXA_MOL_GetStereoVertex

IXA ATOMID IXA MOL GetStereoVertex (IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,
IXA STEREOID vStereo,

int vVertexIndex):;

Description

Returns the IXA Atom Identifier for one of the vertices involved in a stereodescriptor (specified

by an IXA Stereodescriptor Identifier) in an XXA Molecule Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the IXA Molecule Object to be examined.

vStereo: IXA Stereodescriptor Identifier for a stereodescriptor in the XA Molecule
Obiject.

vVertexIndex: Index number (from zero) for the vertex whose IXA Atom ldentifier is

required.
Output

IXA Atom ldentifier for the specified vertex in the specified stereodescriptor in the specified

IXA Molecule Object, or IXA ATOMID INVALID On error.

82

IXA_MOL_GetStereoParity

IXA STEREO PARITY IXA MOL GetStereoParity
(IXA STATUS HANDLE hStatus,
IXA MOL HANDLE hMolecule,

IXA STEREOID vStereo);

Description

Returns the parity value for a stereodescriptor (specified by I)XA Stereodescriptor Identifier) in
an IXA Molecule Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.
hMolecule: Handle for the XA Molecule Object to be examined.

vStereo: IXA Stereodescriptor Identifier for the stereodescriptor to be examined.

Output

The parity value for the specified stereodescriptor in the specified IXA Molecule Object.

InChl Builder Objects

IXA InChl Builder Objects are used to generate InChls and Auxiliary Data for the molecules
represented in XA Molecule Objects. The basic procedure is to associate an XA Molecule
Object with an IXA InChl Builder Object, set any options required, and then extract the InChl
from it, along with Auxiliary Data and Log Data, if required. By default (if no options are
specified) a standard InChl is generated. The actual process of InChl generation occurs when
the first function call is made to extract the InChl, Auxiliary Data or Log Data, for a particular

associated IXA Molecule Object and set of InChl-generation options.

83

Types and Constants

IXA InChl Builder Objects have Handles of type IXA INCHIBUILDER HANDLE. Most
options controlling INChl generation are on/off switches. The switches are referenced as

constants of type IXA INCHIBUILDER OPTION, as follows:

+ IXA INCHIBUILDER OPTION NewPsOff:Ifsetto IXA FALSE, only the narrow end
of a stereochemistry wedge bond points to a stereocentre (Standard InChl); if setto IXA TRUE,

both ends of a stereochemistry wedge bond point to stereocentres.

« IXA INCHIBUILDER OPTION DoNotAddH: If set to IXA FALSE, hydrogens are
added to nonhydrogen atoms according to normal valences (Standard InChl); if set to
IXA TRUE, all hydrogens in the IXA Molecule must be specified explicitly, either by adding
them as separate atoms, or by specifying them using function

IXA MOL SetAtomHydrogens.

« IXA INCHIBUILDER OPTION SUU: ("Stereo Unknown Undefined") If set to
IXA FALSE, unknown or undefined stereochemistry is not indicated unless at least one
defined stereocentre is present (Standard InChl); if set to IXA TRUE, unknown or undefined

stereochemistry is always indicated.

« IXA INCHIBUILDER OPTION SLUUD: (“Stereo Labels for Unknown and Undefined
are Different”) If set to IXA FALSE, the stereo labels for both unknown and undefined
stereocentres are shown as "?" (Standard InChl); if set to IXA TRUE, the stereo labels for

unknown stereo-chemistry are shown as “u”, while those for undefined are shown as "?".

* IXA INCHIBUILDER OPTION FixedH: If setto IXA FALSE, no Fixed H layer is

included (Standard InChl); if set to IXA TRUE, a Fixed H layer is included.

+ IXA INCHIBUILDER OPTION RecMet: If set to IXA FALSE, reconnected metals
results are not included (Standard InChl); If set to IXA TRUE, reconnected metals results are

included.

 IXA INCHIBUILDER OPTION KET: ("Keto-Enol Tautomerism”) If set to
IXA FALSE, keto-enol tautomerism is ignored (Standard InChl); if set to IXA TRUE, keto-

enol tautomerism is accounted for (experimental extension to InChl 1).

84

¢ IXA INCHIBUILDER OPTION 15T ("1,5-Tautomerism") If setto IXA FALSE, 1,5-
tautomerism is ignored (Standard InChl); if set to IXA TRUE, 1,5-tautomerism is accounted

for (experimental extension to InChl 1).

* IXA INCHIBUILDER OPTION SaveOpt: Ifsetto IXA FALSE, any options used for
non-standard InChl generation are not saved in the InChl string; if set to IXA TRUE, any

options used for nonstandard InChl generation are saved in the InChl string.

« IXA INCHIBUILDER OPTION AuxNone:|Ifsetto IXA FALSE, auxiliary information
is generated alongside the InChl (default); if set to IXA TRUE, no auxiliary information is

generated.

¢ IXA INCHIBUILDER OPTION WarnOnEmptyStructure: If setto IXA FALSE
(default), no warning is generated if an empty structure (XA Molecule Object with zero atoms)
is used to generate an InChl; if setto IXA TRUE a warning message is added to the IXA Status

Object, and an empty InChl is generated.

Options for the interpretation of stereochemistry during InChl generation are constants of type

IXA INCHIBUILDER STEREOOPTION, as follows:

« IXA INCHIBUILDER STEREOOPTION_ SAbs (use absolute stereochemistry - this is

the default option and allows a Standard InChl to be generated)

* IXA INCHIBUILDER STEREOOPTION_ SNon ignore all stereochemistry)

IXA INCHIBUILDER STEREOOPTION SRel (use relative stereochemistry)
« IXA INCHIBUILDER STEREOOPTION SRac (use racemic stereochemistry)

* IXA INCHIBUILDER STEREOOPTION SUCF (use the chiral flag set for the IXA
Molecule Object by function IXA MOL SetChiral to determine how to interpret
stereochemistry: use absolute stereochemistry if the chiral flag is IXA TRUE; use relative
stereochemistry if it is IXA_FALSE)

85

Functions to Generate InChls

IXA_INCHIBUILDER_Create

IXA INCHIBUILDER HANDLE IXA INCHIBUILDER Create

(IXA STATUS HANDLE hStatus);

Description

Creates a new empty IXA InChl Builder Object and returns its handle.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

Output

Handle for the newly-created IXA InChl Builder Object.

IXA_INCHIBUILDER_SetMolecule

void IXA INCHIBUILDER SetMolecule (IXA STATUS HANDLE hStatus,
IXA INCHIBUILDER HANDLE hBuilder,

IXA MOL HANDLE hMolecule) ;

Description

Associates an 1XA Molecule Object with an IXA InChl Builder Object, replacing any IXA

Molecule Object previously associated with it.
Input
hStatus: Handle for an IXA Status Object to receive status messages.

hBuilder: Handle for the XA InChl Builder Object to be modified.

86

hMolecule: Handle for the XA Molecule Object to be associated with the IXA InChl Builder
Object.

IXA_INCHIBUILDER_GetInChl

const char* IXA INCHIBUILDER GetInChI
(IXA STATUS HANDLE hStatus,
IXA INCHIBUILDER HANDLE
hBuilder) ;

Description

Returns a string containing the InChl for the molecule described in the IXA Molecule Object
currently associated with an IXA InChl Builder Object, based on any options currently set for
the IXA InChl Builder Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hBuilder: Handle for the IXA InChl Builder Object to be examined.

Output

Null-terminated string containing the InChl for the XA Molecule Object currently associated
with the IXA InChl Builder Object; NULL is returned on error. The returned string is owned
by the IXA InChl Builder Object, and is liable to change if the IXXA InChl Builder Object, or
the IXA Molecule Object associated with it, is modified in any way. The string must therefore

be copied by the user if it is to be retained.

IXA_INCHIBUILDER_GetAuxInfo

const char* IXA INCHIBUILDER GetAuxInfo
(IXA STATUS HANDLE hStatus,

IXA INCHIBUILDER HANDLE hBuilder);

87

Description

Returns a string containing the Auxiliary Information for the molecule described in the IXA

Molecule Object currently associated with an IXA InChl Builder Object.
Input
hStatus: Handle for an IXA Status Object to receive status messages.

hBuilder: Handle for the XA InChl Builder Object to be examined.

Output

Null-terminated string containing the Auxiliary Information for molecule described in the IXA
Molecule Object currently associated with the IXXA InChl Builder Object. NULL is returned on
error. The returned string is owned by the IXA InChl Builder Object, and is liable to change if
the XA InChl Builder Object, or the IXA Molecule Object associated with it, is modified in

any way. The string must therefore be copied by the user if it is to be retained.

IXA_INCHIBUILDER_GetLog

const char* IXA INCHIBUILDER GetLog
(IXA STATUS HANDLE hStatus,
IXA INCHIBUILDER HANDLE
hBuilder) ;

Description

Returns a string containing Log Data for the generation of the InChl for the molecule described
in the IXA Molecule Object currently associated with an XA InChl Builder Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hBuilder: Handle for the XA InChl Builder Object to be examined.

88

Output

Null-terminated string containing Log Data for the generation of the InChl for the molecule
described in the IXXA Molecule Object currently associated with the IXA InChl Builder Object.

NULL is returned on error. The returned string is owned by the IXA InChl Builder Object, and
is liable to change if the IXA InChl Builder Object, or the IXA Molecule Object associated
with it, is modified in any way. The string must therefore be copied by the user if it is to be

retained.

IXA_INCHIBUILDER_Destroy

void IXA INCHIBUILDER Destroy
(IXA STATUS HANDLE hStatus,

IXA INCHIBUILDER HANDLE hBuilder);

Description

Destroys an IXA InChl Builder Object, releasing all memory that it uses.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hBuilder: Handle for the IXA InChl Builder Object to be destroyed.

Functions to Set InChl-Generation Options

The functions described in this section allow generation of non-standard InChls by specifying
various nonstandard options; in addition a processing timeout can be imposed on the actual

generation of the InChl.

IXA_INCHIBUILDER_SetOption

void IXA INCHIBUILDER SetOption (IXA STATUS HANDLE hStatus,

89

IXA INCHIBUILDER HANDLE hBuilder,
IXA INCHIBUILDER OPTION vOption,

IXA BOOL vValue) ;

Description

Sets an “on/off” option for InChl generation using an IXA InChl Builder Object.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hBuilder: Handle for the IXXA InChl Builder Object for which the option is to be set.

vOption: INChl generation option to be set.

vValue: Value to be used for the specified option. IXA TRUE means that the specified option
should be applied; IXA FALSE means that the option should not be applied, and is the default
situation if this function is not called at all for the IXA InChl Builder Object. If all options are

setto IXA FALSE, a Standard InChl is generated.

IXA_INCHIBUILDER_SetOption_Stereo

void IXA INCHIBUILDER SetOption Stereo
(IXA STATUS HANDLE hStatus,
IXA INCHIBUILDER HANDLE hBuilder,

INCHIBUILDER STEREOOPTION vValue);

90

Description

Sets an option for interpretation of stereochemistry for InChl generation. If this function is not
called to set an option, the default option is to use absolute stereochemistry

(INCHIBUILDER STEREOOPTION SAbs), which generates a Standard InChl.
Input

hStatus: Handle for an IXA Status Object to receive status messages.

hBuilder: Handle for the XA InChl Builder Object for which the option is to be set.

vValue: Option value to be applied for interpretation of stereochemistry in InChl generation.

IXA_INCHIBUILDER_SetOption_Timeout

void IXA INCHIBUILDER SetOption Timeout
(IXA STATUS HANDLE hStatus,

IXA_INCHIBUILDER_HANDLE
hBuilder,

int vValue):;

Description

Sets a timeout for InChl generation. Functions which involve the generation of InChls will fail

if the specified timeout is exceeded.
Input

hStatus: Handle for an IXA Status Object to receive status messages.

91

hBuilder: Handle for the IXA InChl Builder Object whose behaviour is to be modified.
vValue: Maximum time permitted in seconds. A value of zero indicates that no timeout is

applied, and is the default if this function is never called.

InChlKey Builder Objects

IXA InChIKey Builder Objects are used for the generation of InChIKeys. The basic procedure
is to associate an InChl with the IXA InChlKey Builder Object, and then extract the
corresponding InChlKey from it. IXA InChlKey Builder Objects have Handles of type
IXA INCHIKEYBUILDER HANDLE.

IXA_INCHIKEYBUILDER_Create

IXA INCHIKEYBUILDER HANDLE IXA INCHIKEYBUILDER Create

(IXA STATUS HANDLE hStatus);

Description

Creates a new XA InChlKey Builder Object and returns its Handle.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

Output

Handle for the newly-created IXA InChlKey Builder Object.

IXA_INCHIKEYBUILDER_SetInChl

void IXA INCHIKEYBUILDER SetInChI

(IXA STATUS HANDLE hStatus,

92

IXA INCHIKEYBUILDER HANDLE hInChIKeyBuilder,

const char* pInChI);

Description

Associates an InChl with an IXA InChlKey Builder Object, replacing any InChl previously

associated with it.

Input

hStatus: Handle for an IXA Status Object to receive status messages.
hInChIKeyBuilder: Handle for the IXA InChIKey Builder Object to be modified.

pInChI: Null-terminated character string containing the InChl to be associated with the I XA
InChlKey Builder Object.

IXA_INCHIKEYBUILDER_GetInChlIKey

const char* IXA INCHIKEYBUILDER GetInChIKey
(IXA STATUS HANDLE hStatus,

IXA INCHIKEYBUILDER HANDLE hInChIKeyBuilder);

Description

Returns a string containing the InChlKey corresponding to the InChl currently associated with
an IXA InChlKey Builder Object.

Input

hStatus: Handle for an IXA Status Object to receive status messages.

93

hInChIKeyBuilder: Handle for the IXA InChlKey Builder Object to be used for InChlKey

generation.
Output

Null-terminated string containing the InChIKey for the InChl currently associated with the XA
InChlKey Builder Object. The returned string is owned by the XA InChiKey Builder Object,
and is liable to change if the IXA InChlKey Builder Object is modified in any way. The string
must therefore be copied by the user if it is to be retained.

IXA_INCHIKEYBUILDER_Destroy

void IXA INCHIKEYBUILDER Destroy
(IXA STATUS HANDLE hStatus,

IXA INCHIKEYBUILDER HANDLE hInChIKeyBuilder);

Description

Destroys an IXA InChlKey Builder Object, releasing all memory that it uses.

Input
hStatus: Handle for an IXA Status Object to receive status messages.

hInChIKeyBuilder: Handle for the IXA InChIKey Builder Object to be destroyed.

94

