The Status of the IUPAC International Chemical Identifier standard - InChI

Stephen Heller InChI-Trust Project Director steve@inchi-trust.org

The main web sites for the IUPAC InChI project are: http://www.iupac.org/inchi and http://www.inchi-trust.org 6/

6/1/2014

Slides are available at http://www.hellers.com/steve/pub-talks/AMS-6-14.pdf

On behalf of the InChI team I would like to thank the CSA Trust for the Mike Lynch Award and thank the ICCS for the invitation to give this presentation today.

> Feel free to ask questions anytime – You can't interrupt my train of thought - I don't have one.

These slides were made from 100% recycled electrons

What is InChl?

The IUPAC International Chemical Identifier structure representation standard, or InChl, is a non-proprietary, machine-readable string of symbols which enables a computer to represent the compound in a completely unequivocal manner.

InChIs are produced by computer from structures drawn on-screen with existing structure drawing software, and the original structure can be regenerated from an InChI with appropriate software.

InChl is really just a synonym.

http://en.wikipedia.org/wiki/International_Chemical_Identifier

Why InChI? - Too Many Good and Excellent Identifiers ("Standards")

Structure diagrams
- various conventions

- contain 'too much' information

Connection Tables/Notations - MolFiles, SDF, SMILES, ROSDAL, ...

Pronounceable names (and mostly unpronounceable) and mostly complex names
 IUPAC, CAS 8th CI name, CAS 9th CI name, trivial, trade, WHO INN, ASK, ISO

(Dumb) Index Numbers

- EINECS, ELINCS, FEMA, DOT, RTECS, CAS, Beilstein, USP, RTECS, EEC, RCRA, NCI, UN, USAN, EC, ChemSpider ID, REACH, PubChem CID, MFCD#, ...

"Standards are like toothbrushes – everyone has one but no one wants to use someone else's."

Phil Bourne, Associate Director for Data Science, NIH

"No, no, not another structure standard!!!"

InChITRUST

What "is" the InChl standard?

The InChI standard programmed into the algorithm is an arbitrary decision as to how structures are handled. In most cases there is total agreement (e.g., CH_4 - methane). In cases of more complex molecules where there is not agreement among chemists, one representation is chosen. As long as the arbitrarily chosen representation is properly programmed, one will always get the SAME result using it – which is what a standard is!

The Origin of InChl

Stephen R. Heller [srheller@cliff.nal.usda.gov] Sent: Monday, November 15, 1999 6:48 PM To: stein [sstein@enh.nist.gov] Cc: srheller@nist.gov

Steve-

First rough draft. Let's talk tomorrow about it.

Steve

11/15/99

An IUPAC Chemical Registry System

In response to the upcoming March 2000 IUPAC meeting -Representations of Molecular Structure: Nomenclature and its Alternatives I would like to propose the creation of an IUPAC public domain chemical registry system....

InChl is plumbing. InChl is an (enabling) tool. It is a means to an end. InChl is a modern enabling technology.

For all but small group of chemists developing it, InChl is not something anyone should want to know about.

All you want to do is use InChI to find information on the web.

InChI is helping scientists to do better work and find/link to the latest information.

InChl is not a replacement for any existing internal structure representations. InChl is in ADDITION to what one uses internally. Its value to a scientist is in FINDING and LINKING information

Without InChI, finding something on the Internet is like trying to find the bathroom in a house with 1,000,000 unmarked doors

The Internet is like drinking from a fire hydrant; InChI will cut it to a faucet drip.

The problem with too much information on the Internet: Lack of integration

multiple applications multiple repositories multiple interfaces and protocols

InChI does not replace any internal, local system pieces. Your language and format remain as is.

But even though we communicate around the world in English, there are still over 2,500 language versions of the Bible.

As you see on many drug labels "InChI for external use only."(1) The InChI standard is like universal language -- like English.

(1) http://www.macmillandictionary.com/us/dictionary/american/external

InChl is for computers

An InChI string is not directly intelligible to the normal human reader. Like Bar Codes, and InChI QR codes -InChIs are not designed to be read by humans.

Or, put another way – never send a human to do a machine's job!

Technology is at its best when it is invisible.

InChl YouTube Videos

1. What on Earth is InChI? http://www.youtube.com/watch?v=rAnJ5toz26c

2. The Birth of the InChI http://www.youtube.com/watch?v=X9c0PHXPfso

3. The Googlable InChlKey http://www.youtube.com/watch?v=UxSNOtv8Rjw

4. InChI and the Islands http://www.youtube.com/watch?v=qrCqJ0o4jGs

www.inchi-trust.org

 H_3

H₃C

InChI=15/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3

With apologies to Michelangelo -- God created humans & humans created InChI

How do I create an InChI ?

InChIs are produced by computer from structures drawn on-screen with existing structure drawing software, and the original structure can be regenerated from an InChI with appropriate software.

Re: [CHMINF-L] Inchi and chemical databases

You forwarded this message on 9/15/2010 5:37 PM.

CHEMICAL INFORMATION SOURCES DISCUSSION LIST [CHMINF-L@LISTSERV.INDIANA.EDU] on behalf of Ian A Watson Sent: Wednesday, September 15, 2010 3:24 PM To: CHMINF-L@LISTSERV.INDIANA.EDU

Interesting example of Caffeine smiles on the web site. I was able to generate 172 different smiles for the Caffeine molecule (email me if you'd like them). Presumably each one of these could be a unique smiles in somebody's implementation.

But when I converted each of those 172 different smiles to InChI, I got the exact same InChI string for each one. That's exactly how things are supposed to work. Nice.

Ian Watson

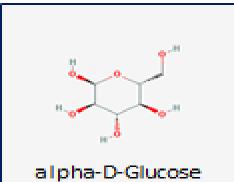
c1(=0)c2c(n(C)c(=0)n1C)ncn2Cc12c(n(C)c(=0)n(C)c1=0)ncn2CO=c1n(C)c(=O)c2c(ncn2C)n1CCn1c2c(nc1)n(C)c(=0)n(C)c2=0c12c(ncn1C)n(C)c(=0)n(c2=0)C O=c1c2c(ncn2C)n(c(=0)n1C)Cc12c(n(cn1)C)c(=0)n(C)c(=0)n2CCn1c2c(nc1)n(c(=0)n(c2=0)C)Cc12c(ncn1C)n(c(=0)n(C)c2=0)C c12c(ncn1C)n(C)c(=0)n(C)c2=0 Cn1c(=0)n(C)c(=0)c2c1ncn2Cn1(c2c(nc1)n(C)c(=0)n(C)c2=0)Cc12c(n(C)cn1)c(=0)n(c(=0)n2C)CCn1c(=0)c2c(ncn2C)n(c1=0)C n1cn(C)c2c1n(c(=0)n(c2=0)C)Cn1cn(c2c1n(C)c(=0)n(c2=0)C)Cc12c(c(=0)n(c(=0)n1C)C)n(C)cn2 c1nc2c(n1C)c(=0)n(C)c(=0)n2C c1(=0)n(C)c(=0)c2c(ncn2C)n1C O=c1n(c(=O)c2c(ncn2C)n1C)C Cn1cnc2c1c(=0)n(C)c(=0)n2Cn1(c(=0)n(c(=0)c2c1ncn2C)C)Cc1(=0)n(C)c(=0)c2c(n1C)ncn2C O=c1n(c2c(n(cn2)C)c(=0)n1C)CCn1c2c(n(cn2)C)c(=0)n(c1=0)CCn1c(=0)c2c(n(c1=0)C)ncn2CCn1cnc2c1c(=0)n(c(=0)n2C)Cc1nc2c(c(=0)n(C)c(=0)n2C)n1Cc12c(ncn1C)n(c(=0)n(c2=0)C)C c1nc2c(n1C)c(=0)n(c(=0)n2C)CCn1c2c(n(cn2)C)c(=0)n(C)c1=0n1(C)c2c(n(C)c(=0)n(c2=0)C)nc1 n1(C)c2c(nc1)n(C)c(=O)n(c2=O)C n1(c(=0)c2c(n(c1=0)C)ncn2C)C n1(c(=0)c2c(n(C)c1=0)ncn2C)CCn1c(=0)n(c2c(c1=0)n(C)cn2)C n1(C)c(=0)n(C)c(=0)c2c1ncn2Cc1(=0)n(c(=0)c2c(ncn2C)n1C)C n1(cnc2c1c(=0)n(c(=0)n2C)C)Cn1(C)c(=0)n(C)c2c(n(cn2)C)c1=0 n1(c2c(n(cn2)C)c(=0)n(C)c1=0)Cn1(C)cnc2c1c(=0)n(C)c(=0)n2C O=c1c2c(n(C)c(=O)n1C)ncn2Cn1(c2c(nc1)n(c(=0)n(c2=0)C)C)C)Cn1(C)c(=0)c2c(n(c1=0)C)ncn2Cn1(c2c(c(=0)n(C)c1=0)n(cn2)C)Cc12c(n(c(=0)n(c1=0)C)C)ncn2C n1cn(C)c2c1n(C)c(=0)n(c2=0)Cc12c(c(=0)n(C)c(=0)n1C)n(cn2)C Cn1c2c(n(C)cn2)c(=0)n(c1=0)Cn1(c(=0)n(C)c2c(n(cn2)C)c1=0)C n1cn(c2c1n(C)c(=0)n(C)c2=0)Cc1(=0)n(c2c(c(=0)n1C)n(C)cn2)C Cn1c(=0)n(c(=0)c2c1ncn2C)C O=c1n(c(=O)n(c2c1n(cn2)C)C)Cn1(c2c(c(=0)n(c1=0)C)n(C)cn2)C c12c(n(cn1)C)c(=0)n(c(=0)n2C)Cc12c(c(=0)n(C)c(=0)n1C)n(C)cn2 Cn1c(=0)c2c(n(C)c1=0)ncn2C

c1(=0)n(C)c2c(n(cn2)C)c(=0)n1CO=c1n(C)c2c(c(=O)n1C)n(C)cn2 n1(C)c2c(c(=O)n(C)c1=O)n(C)cn2 n1cn(c2c1n(c(=0)n(C)c2=0)C)CO=c1n(c(=0)n(C)c2c1n(cn2)C)Cc1(=0)c2c(n(c(=0)n1C)C)ncn2C c1(=0)n(c2c(n(cn2)C)c(=0)n1C)CCn1c2c(c(=0)n(c1=0)C)n(cn2)Cc1(=0)n(c(=0)c2c(n1C)ncn2C)C O=c1n(c(=O)c2c(n1C)ncn2C)C n1cn(C)c2c1n(c(=O)n(C)c2=O)C n1(c(=0)n(C)c2c(c1=0)n(C)cn2)CO=c1c2c(ncn2C)n(C)c(=O)n1Cn1(cnc2c1c(=0)n(C)c(=0)n2C)C n1(C)cnc2c1c(=0)n(c(=0)n2C)Cn1cn(C)c2c1n(C)c(=0)n(C)c2=0O=c1n(C)c(=O)n(C)c2c1n(C)cn2 n1(C)c(=0)n(c2c(c1=0)n(C)cn2)CCn1c(=0)c2c(ncn2C)n(C)c1=0 n1(c2c(n(cn2)C)c(=0)n(c1=0)C)C n1(C)c2c(n(C)c(=0)n(C)c2=0)nc1 Cn1c2c(n(c(=0)n(c2=0)C)C)nc1n1(c(=0)n(C)c(=0)c2c1ncn2C)CO=c1n(C)c2c(n(C)cn2)c(=O)n1C n1(C)c2c(n(cn2)C)c(=0)n(C)c1=0c1(=0)c2c(ncn2C)n(c(=0)n1C)CO=c1n(c2c(c(=0)n1C)n(cn2)C)C Cn1c2c(n(C)c(=O)n(C)c2=O)nc1 Cn1c2c(nc1)n(c(=0)n(C)c2=0)C Cn1c2c(n(C)cn2)c(=0)n(C)c1=0c12c(n(C)c(=0)n(c1=0)C)ncn2C n1(c2c(c(=0)n(c1=0)C)n(cn2)C)Cc1(=0)n(C)c(=0)n(c2c1n(cn2)C)C n1(c2c(n(C)cn2)c(=0)n(c1=0)C)C c1(=0)n(c2c(n(C)cn2)c(=0)n1C)C n1(c2c(nc1)n(C)c(=0)n(c2=0)C)C Cn1c2c(nc1)n(C)c(=0)n(c2=0)Cc12c(c(=0)n(c(=0)n1C)C)n(cn2)C Cn1c2c(n(c(=0)n(C)c2=0)C)nc1c1(=0)n(c(=0)n(C)c2c1n(C)cn2)C c1(=0)n(C)c2c(n(C)cn2)c(=0)n1Cn1(c(=0)c2c(ncn2C)n(C)c1=0)C n1(c2c(n(C)c(=0)n(C)c2=0)nc1)C0=c1n(c2c(n(C)cn2)c(=0)n1C)Cc1(=0)n(C)c(=0)n(C)c2c1n(C)cn2 Cn1c(=0)n(c2c(c1=0)n(cn2)C)Cn1(c2c(n(c(=0)n(C)c2=0)C)nc1)C Cn1c2c(c(=0)n(c1=0)C)n(C)cn2c1(=0)n(C)c2c(c(=0)n1C)n(cn2)C O=c1n(C)c2c(c(=0)n1C)n(cn2)Cc1(=0)n(C)c(=0)n(c2c1n(C)cn2)C Cn1c(=0)n(C)c2c(n(C)cn2)c1=0n1(c2c(nc1)n(c(=0)n(C)c2=0)C)CO=cin(c(=0)n(c2cin(C)cn2)C)CO=c1n(C)c(=O)n(C)c2c1n(cn2)Cc1(=0)n(C)c2c(c(=0)n1C)n(C)cn2 c1(=0)n(c(=0)n(C)c2c1n(cn2)C)Cn1(C)c(=0)c2c(ncn2C)n(C)c1=0 Cn1c(=0)n(c2c(n(C)cn2)c1=0)C

www.inchi-trust.org

0=c1c2c(n(c(=0)n1C)C)ncn2CO=c1n(C)c2c(n(cn2)C)c(=0)n1Cn1(C)c(=0)n(c2c(n(C)cn2)c1=0)C n1(C)c2c(c(=0)n(c1=0)C)n(cn2)C Cn1c2c(c(=0)n(C)c1=0)n(C)cn2 c1(=0)n(c2c(c(=0)n1C)n(cn2)C)C n1(c2c(n(C)c(=0)n(c2=0)C)nc1)C n1(c2c(c(=0)n(C)c1=0)n(C)cn2)C n1(C)c(=0)c2c(ncn2C)n(c1=0)C Cn1c(=0)n(C)c2c(n(cn2)C)c1=0 O=c1n(C)c(=O)c2c(n1C)ncn2C n1(c(=0)n(c2c(c1=0)n(cn2)C)C)C O=c1n(c(=0)n(C)c2c1n(C)cn2)Cn1(C)c(=0)n(c2c(n(cn2)C)c1=0)C n1(c(=0)n(C)c2c(n(C)cn2)c1=0)C c1(=0)n(C)c(=0)n(C)c2c1n(cn2)C n1(c(=0)n(C)c2c(c1=0)n(cn2)C)C O=c1n(C)c(=O)n(c2c1n(cn2)C)Cn1(c(=0)c2c(ncn2C)n(c1=0)C)C c1(=0)c2c(ncn2C)n(C)c(=0)n1C Cn1c2c(n(C)c(=0)n(c2=0)C)nc1 n1(C)c(=0)c2c(n(C)c1=0)ncn2Cn1(C)c(=0)n(C)c2c(c1=0)n(C)cn2 Cn1c2c(c(=0)n(C)c1=0)n(cn2)C n1(C)c(=0)n(C)c2c(n(C)cn2)c1=0 n1(c2c(n(C)cn2)c(=0)n(C)c1=0)C n1(C)c(=0)n(c(=0)c2c1ncn2C)C c1(=0)n(c(=0)n(c2c1n(cn2)C)C)C c1(=0)n(c(=0)n(c2c1n(C)cn2)C)C n1(C)c2c(nc1)n(c(=0)n(C)c2=0)C Cn1c(=0)n(C)c2c(c1=0)n(C)cn20=c1n(c2c(c(=0)n1C)n(C)cn2)Cn1(C)c2c(n(c(=0)n(c2=0)C)C)nc1 n1(C)c(=0)n(C)c2c(c1=0)n(cn2)C n1(C)c2c(nc1)n(C)c(=0)n(C)c2=0 n1(C)c2c(n(cn2)C)c(=0)n(c1=0)C n1(C)c(=0)n(c2c(c1=0)n(cn2)C)Cn1(C)c2c(c(=0)n(C)c1=0)n(cn2)C n1(c(=0)n(c2c(n(C)cn2)c1=0)C)C n1(c(=0)n(c2c(c1=0)n(C)cn2)C)C n1(C)c2c(n(C)cn2)c(=0)n(C)c1=0 n1(C)c2c(c(=0)n(c1=0)C)n(C)cn2 n1(C)c2c(n(c(=0)n(C)c2=0)C)nc1 n1(C)c2c(nc1)n(c(=0)n(c2=0)C)C

www.inchi-trust.org

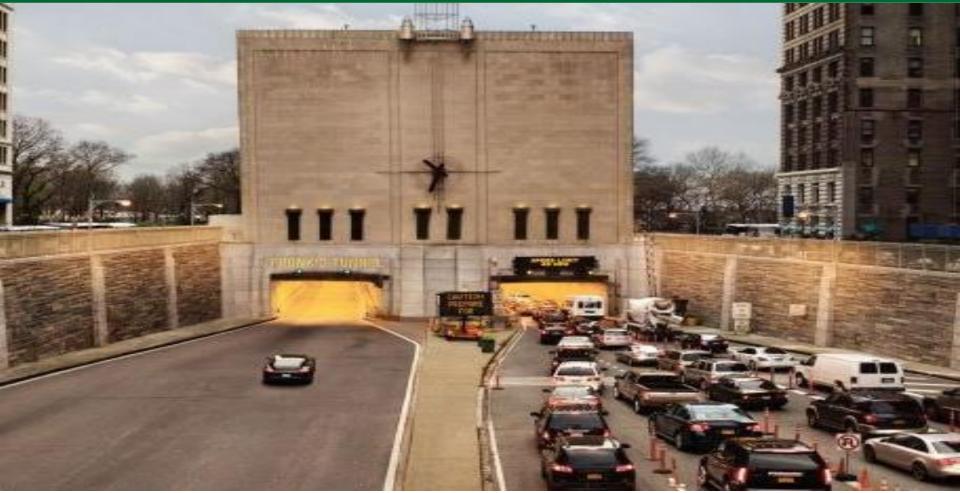

E Pluribus Unum Out of many, One

What about SMILES as a standard?

с([с@@H]1[с@H]([с@@H]([с@H](01)0)0)0)0)0

- SMILES is a popular line notation
 - But not a published standard

- Every vendor has its own implementation
 - Differences in aromaticity models can lead to structure corruption
- Cannot reliably compare strings
 - Different software packages can make different strings for same structure
- No structure normalization
 - Different structural representations can yield different strings


Slide from Evan Bolton – NIH/PubChem

Too many "standards" actually slow things down and make getting to the information you want and need take a lot longer time and effort than it would take with InChl

www.inchi-trust.org

InChl

172 SMILES representations

InChI is the worst computer readable structure representation except for all those other forms that have been tried from time to time.

With apologies to Sir Winston Churchill (House of Commons speech on Nov. 11, 1947)

InChl Characteristics

- 1. Easy to generate (It will use existing software.)
- 2. Expressive (It will contain structural information.)
- 3. Unique/Unambiguous

4. Easy to search for structure via Internet search engines (Google, Yahoo, Bing, Blekko etc.) using the InChI (hash) Key.

InChl as a web index for molecules

"We have now discovered, serendipitously, that these InChIs have been comprehensively and accurately indexed by the Google search engine. From preliminary exploration it appears that every known document in which an InChI appears has been indexed and that all are retrievable by standard queries with virtually 100% precision. This means that standard Web-based indexers, without any alteration, are capable of acting as completely precise chemical search engines. Although we have many years of developing chemistry on the web, this was an unexpected and very welcome finding"

Murray-Rust et al. 2004 http://lists.w3.org/Archives/Public/public-swlsws/2004Oct/att-0019/

Where are InChls?

PubChem ~ 50 million ChemSpider ~ 30 million Reaxys ~ 30 million PubChem from patents (all sources) ~ 15 million PubChem journal sources (PubMed + ChEMBL) ~ 1 million SciFinder ~ 60 million (estimated as input for searches) Web sources outside the above (no idea)

Chris Southan BioIT 2014 lecture

InChI is an international computer readable standard not just for chemists, but rather has very wide technical and non-technical use for linking and connecting information in many areas of scientific and everyday activities --

abstracting services biochemistry biology/genomics databases bio-activity databases books chemical biology chemical spills chemistry databases clinical trials company annual reports drug discovery drug information drug overdoses electronic books environmental information food additives lawsuits magazines medicinal chemistry medical information medical records metabolomics newspapers patents packages/bottles/transportation labels/ everyday product labels pharmacology scientific journals toxicology toxicological information

InChl characteristics

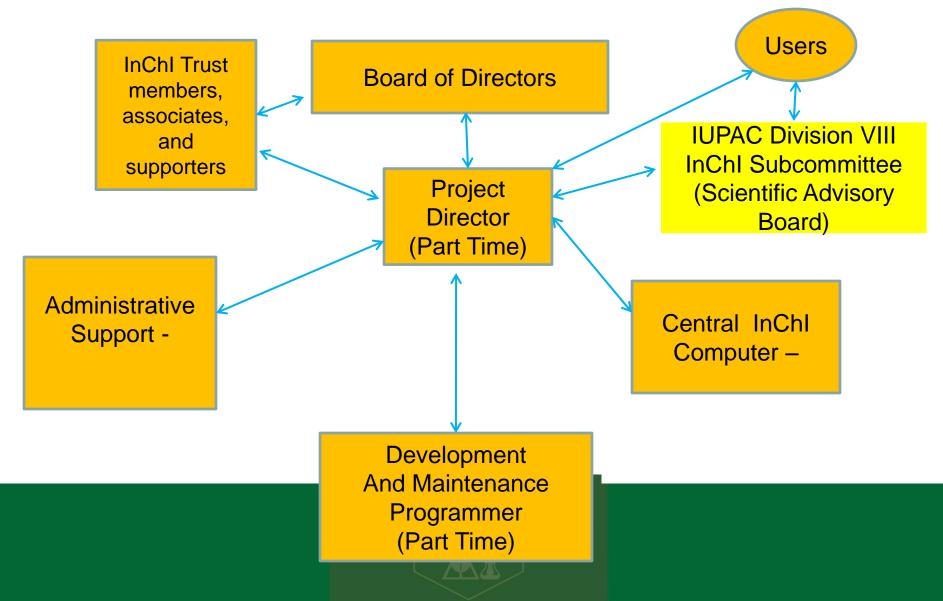
Consensus Technical competence Political and technical cooperation Precompetitive collaboration No competition with commercial products No mission creep IUPAC blessing/endorsement & rapid IUPAC acceptance Excellent understanding of what the Internet and how it can be effectively used in Chemical Information

Vision of the future

While InChI is an Open Source, public domain, system for creating a unique computer-readable identifier ("name") it is NOT a registry system. InChl's are created only by those who choose to adopt and use the algorithm. Registry systems which index the literature are complementary to any InChl databases that anyone creates. Of course if one wants to create a chemical registration system, InChI along with other notations can be used.

Critical words/phrases for InChl

Link Addition; not replacement Algorithm Synonym No bureaucracy



The InChl Trust

To function and succeed, InChI had to become personality independent. InChI had to be "institutionalized". If the work of this project was to be enduring it needed to turned over to an entity that would ensure its ongoing activities and be acceptable to the community. It was concluded that a not-for-profit organization would best fit the ongoing and future project needs. Thus the decision to create and incorporate the "InChI Trust" as a UK charity.

InChl Trust Organization

Total number of Members, Associate Members, and (non paying) Supporters ~60

(Please consider joining !!)

InChl Staff and Collaborators

The InChI project has had the unusual perfect "good storm" of cooperation and support. It is a truly international project with programming in Moscow, computers in the cloud, incorporated in the UK, and a project director in the USA. Collaborators from over a dozen countries, from academia, Pharma, publishers, and the chemical information industry, have all offered senior scientific staff to develop the InChI standard.

Why InChl is a success

1. Organizations need a structure representation for their content (databases, journals, chemicals for sale, products, and so on) so that their content can be LINKED to and combined with other content on the Internet. InChI provides an excellent ROI (return on investment). InChI increases productivity!

2. InChI is a public domain algorithm that anyone, anywhere can freely use. And they sure use it!

Success is uncoerced adoption

Bypassing IUPAC procedures

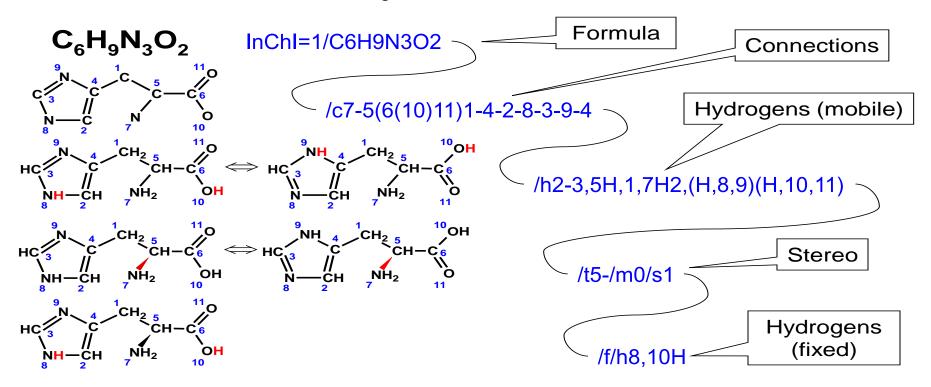
The usual very, lengthy IUPAC approval process was hijacked and sped up by sending the IUPAC bureaucracy, not a white paper with InChI rules, but rather unreadable and unintelligible C code.

How did InChl succeed?

This project was the perfect "good" storm. The project came about in 1999 when Steve Heller retired and his wife threatened him with divorce unless he found some to do. (Yes, behind every successful project is a woman.) IUPAC discovered that nomenclature was for 20th, not 21st century. NIST, the US standards agency, needed a way to represent and link the structures from its standard property databases. The Internet (web 2.0) was taking off enabling silos and islands of information to be linked and searched if only there was a linking element. Publishers and database producers realized their information would be more valuable (i.e., they could sell more to more people) if only there was a way to link chemical structures from all the diverse resources on the Internet. With no funds to support the project, IUPAC needed the private sector to pay for the short and long term project needs. Lastly, the decentralized structure and hands-off management of the project enabled all the expert egos to be satisfied by putting everyone in charge of what they do best and giving them the final say - allowing for proper, scientific, bottom-up decisions.

InChl layered structure design

The current InChI layers are:


- 1. Formula
- 2. Connectivity (no formal bond orders)
 - a. disconnected metals
 - b. connected metals
- 3. Isotopes
- 4. Stereochemistry
 - a. double bond (Z/E)
 - b. tetrahedral (sp3)
- 5. Tautomers (on or off)

Charges are added to end of the string

The InChI Algorithm normalizes chemical representation and includes a "standardized" InChI, and the 'hashed' form called the InChIKey

InChI Layers: L-Histidine

InChI=1/C6H9N3O2/c7-5(6(10)11)1-4-2-8-3-9-4/h2-3,5H,1,7H2,(H,8,9)(H,10,11)/t5-/m0/s1/f/h8,10H InChIKey=HNDVDQJCIGZPNO-QLMCEAFFNA-N InChIKey=HNDVDQJCIGZPNO-YFKPBYRVSA-N

Ø

Caffeine

ChemSpider ID: 2424

Molecular Formula: C8H10N4O2

Average mass: 194.190598 Da

Monoisotopic mass: 194.080383 Da

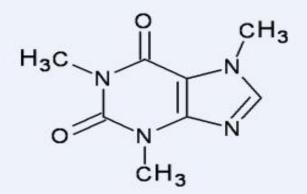
Systematic name

1,3,7-Trimethyl-3,7-dihydro-1H-purine-2,6-dione

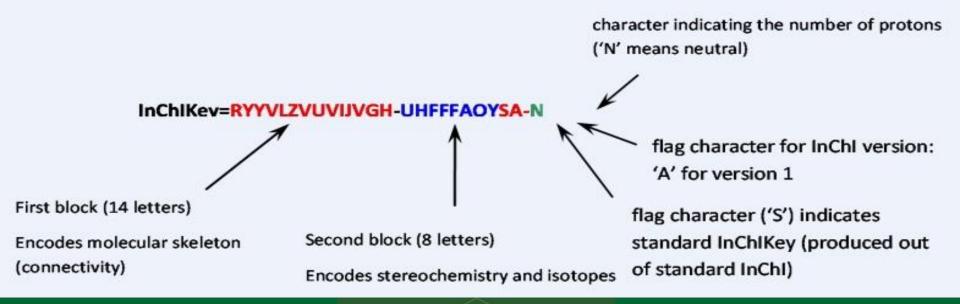
SMILES and InChis

SMILES:

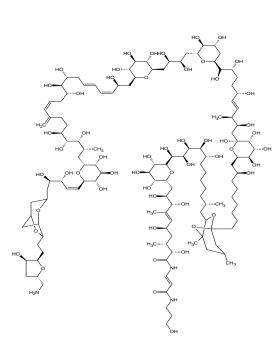
Cn1cnc2c1c(=O)n(c(=O)n2C)C Copy


Std. InChl:

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3 Copy


Std. InChlKey: RYYVLZVUVIJVGH-UHFFFAOYSA-N Copy

Caffeine from ChemSpider database

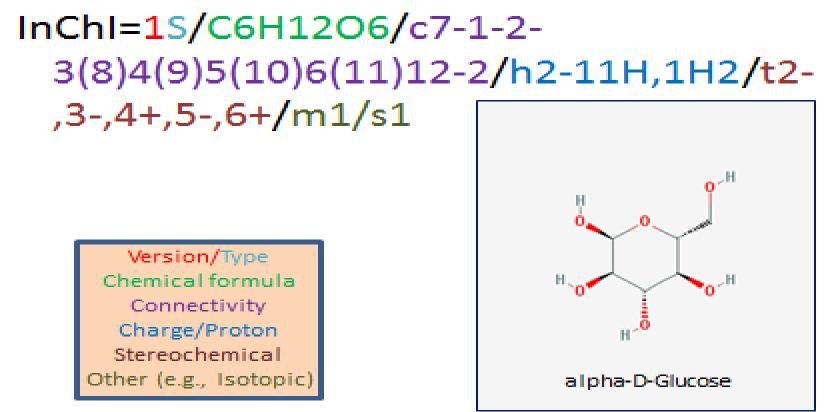


InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H.1-3H3 (caffeine)

Really long InChI (Palytoxin)

Palytoxin

Isolated from Hawaiian soft coral

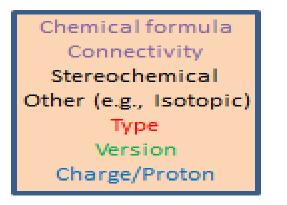

One of the most toxic non-peptide substances

Contains >70 stereochemical elements

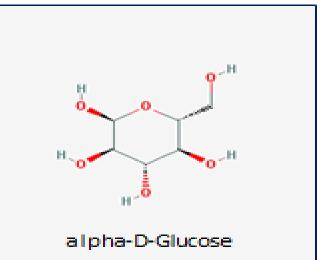
InChIKey=CWODDUGJZSCNGB-DCBUCRFRSA-N

InChITRUST

InChl is a string


"layered" line notation

InChITRUST


InChIKey is a "hashed" InChI

- Search engine friendly InChI
- May allow for 'secure' lookup of a chemical

WQZGKKKJIJFFOK-DVKNGEFBSA-N

"layered" line notation

InChIKey can be a 'secret'

InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6+/m1/s1

WQZGKKKJIJFFOK-DVKNGEFBSA-N

There is no chemical information in an InChIKey ... if you do not know the InChI, you cannot convert the InChIKey back into a chemical structure

Slide from Evan Bolton/NIH/PubChem

QA/QC - InChl Certification Suite

The InChI certification suite is a software package designed to check that your installation of the InChI program has been performed correctly. The programs test your installation against a broad set of structures (which are provided with the Suite) to assure the InChIs and InChIKeys are correct and valid. Only this way is it possible to know that the InChIs have been generated properly and consistently.

Unlike other Trust products (software and documentation) the Certification Suite is NOT free, except to members and supporters who use for non-commercial activities. It costs \$5,000 per year.

Current IUPAC Working Groups & Projects

In Progress:

Organometallics InChI Resolver

Completed:

Revised FAQ's from Cambridge- Nick Day/Peter Murray-Rust InChI Certification Suite Version 1.04 released – 9/11 Markush (contract to be signed when funded) Polymers/Mixtures RInChI – InChI for Reactions (contract to be signed when funded) New API

Started/To be started in 2013/2014:

Electronic/Excited States QR codes for InChI InChI teaching/educational materials Large Molecules/Biopolymers/Macromolecules Material Science (MGI – Materials Genome Initiative) Inorganics Crystal/3D structures Redesign of Handling of Tautomerism

The Future

InChI has become mainstream for publishers, databases providers, and software developers. Over the next 5-10 years, publishers will use data mining to create both better abstracts, useful indexing, and concept terms. Search engines will be able to search for appropriate text and structures and direct users to the original (fee or free/Open Access/Open Data) sources.

Summary

If you are not part of the solution; you are part of the precipitate

Acknowledgements

(Primarily members for the IUPAC InChI subcommittee and associated InChI working groups)

Steve Bachrach, Colin Batchelor, John Barnard, Evan Bolton, Steve Boyer, Steve Bryant, Szabolcs Csepregi, Rene Deplanque, Jeremy Frey, Nicko Goncharoff, Jonathan Goodman, Guenter Grethe, Richard Hartshorn, Jaroslav Kahovec, Richard Kidd, Hans Kraut, Alexander Lawson, Peter Linstrom, Gary Mallard, Bill Milne, Gerry Moss, Peter Murray-Rust, Heike Nau, Marc Nicklaus, Carmen Nitsche, Matthias Nolte, Igor Pletnev, Josep Prous, Peter Murray-Rust, Hinnerk Rey, Ulrich Roessler, Roger Schenck, Martin Schmidt, Steve Stein, Peter Shepherd, Markus Sitzmann, Chris Steinbeck, Keith Taylor, Dmitrii Tchekhovskoi, Bill Town, Wendy Warr, Jason Wilde, Tony Williams, Andrey Yerin.

Special Acknowledgement: Ted Becker& Alan McNaught for their vision and leadership of the future of IUPAC nomenclature.

Have any questions?

If you think of a question later, email me:

steve@inchi-trust.org

