Software status and InChl version 2

InChl Software releases

• **1.00** The beginning Apr 2005

- o 1.01 Aug 2006
 InChI2Struct and many other things appear
- 1.02 beta Sep 2007
 Introduced InChIKey (experimental), API changes
 1.02 beta Sep 2007
 1.02 beta Sep 20
- 1.02 final Jan 2009 Introduced Standard InChI (only Standard supported; InChIKey Layout changed)
- 1.03 Jun 2010
 Both Standard and Non-std InChI/Key now supported

Sep 2011

InChl Software releases

0 1.04

Maintenance release; more permissive license

0 1.05

Introduced (experimental) support of polymers, large molecules, V3000 Molfiles; novel API section; multi-threading pre-release Oct 2016 update Jan 2017 final Feb 2017

O InChI for Reactions Mar 2017

InChl Software v. 1.05 release

- Maintenance release with a number of significant new features
- All things not included there will most likely be postponed to InChI version 2

Added more elements

- Updated software to current IUPAC confirmed elements list
 - (up to 118 oganesson which closes the Period 7)
- o not too much work
- but has to be done in IUPAC-endorsed software

Support of Molfile V3000 format

- Allows one to deal with
 - large (bio)molecules beyond 1000 atoms limit
 - enhanced stereochemistry (e.g., mix of Rel/Abs)
 - extended support of organometallics (haptic bonds)
- The last two features are implemented in reader but are awaiting a future use in InChI 2
- Large molecules (> 1000 atoms) reading

Support of large molecules

- Limit of number of atoms increased (technically) from 1023 to 32767
- Some other internal limits relaxed
- May be extended further
- Tests on PDB 100,000+ molecules; PDB −(OpenBabel) MOL V3000 → mol2inchi

Structure Summary

SD VIEW AIT

Annotations S

Sequence Seque

Sequence Similarity

Structure Similarity

View in 3D: JSmol or PV (in Browser)

Standalone Viewers

Simple Viewer Protein Workshop Ligand Explorer Kiosk Viewer

Protein Symmetry: Cyclic - C12 (View in 3D)

Protein Stoichiometry: Homo 12-mer - A12

Biological assembly 1 assigned by authors and generated by PISA (software)

1FOU

CONNECTOR PROTEIN FROM BACTERIOPH

DOI: 10.2210/pdb1fou/pdb

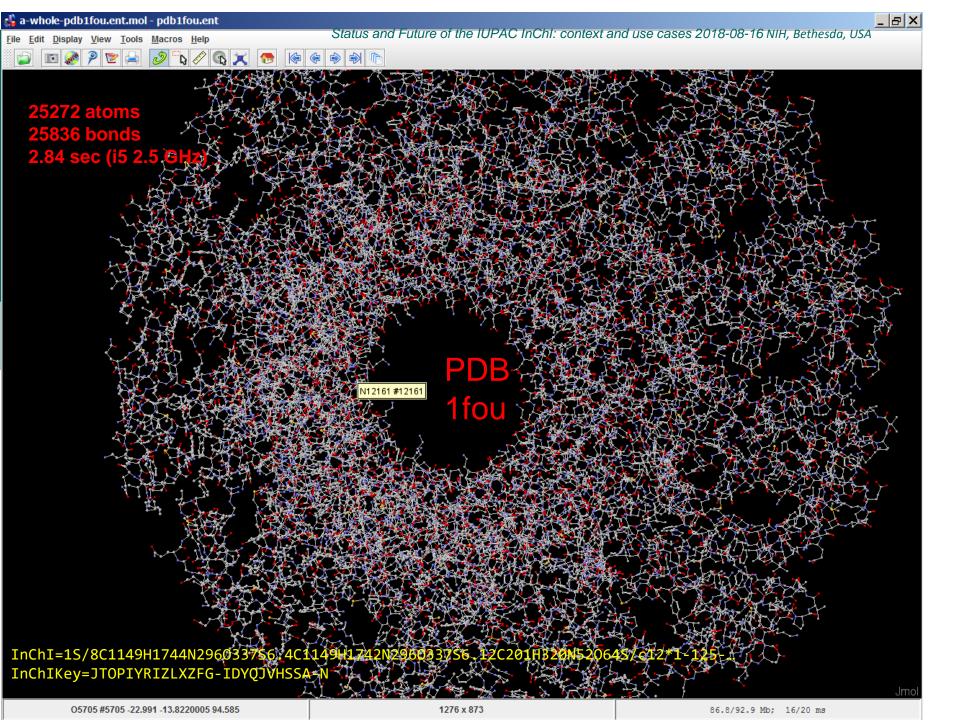
Classification: <u>Viral protein</u> Deposited: 2000-08-28 Released: 2000-12-22 Deposition author(s): <u>Simpson, A.A.</u>, <u>Tao, Y.</u>, <u>Leiman, I</u> <u>N.H.</u>, <u>Morais, M.C.</u>, <u>Grimes, S.N.</u>, <u>Anderson, D.L.</u>, <u>Bake</u> Organism: <u>Bacillus phage phi29</u> Expression System: Bacillus subtilis Mutation(s): 5

Structural Biology Knowledgebase: 1FOU (1 model >15 :

Experimental Data Snapshot

WWPDB

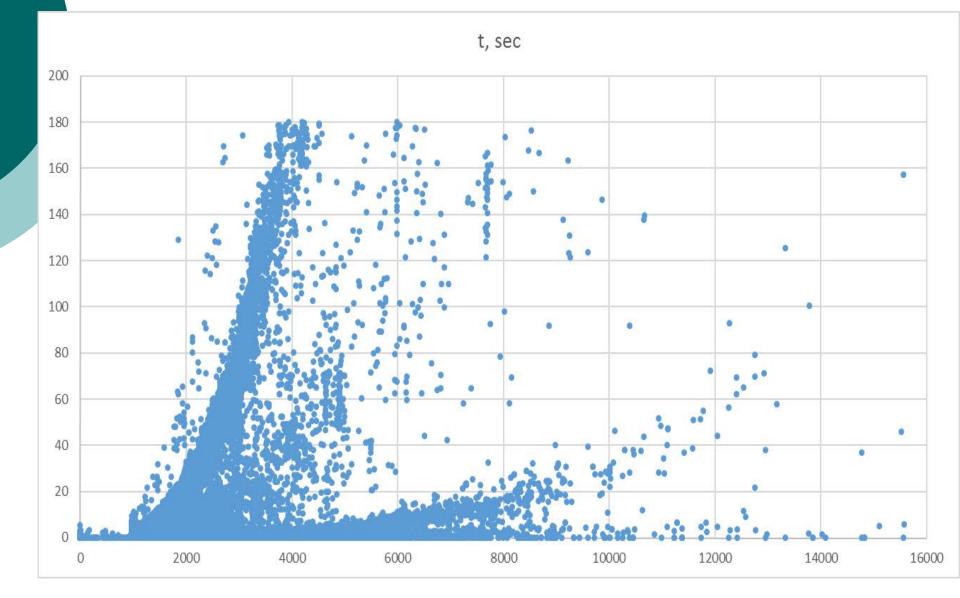
Method: X-RAY DIFFRACTION Resolution: 3.2 Å R-Value Free: 0.360 R-Value Work: 0.290


Ramacha


Side

Literature

Structure of the bacteriophage phi29 DNA page


Simpson, A.A., Tao, Y., Leiman, P.G., Badasso, M.O.

InChI=1S/C8080H12360N210502526S46/c1-852-952-1654-4476-2684-2735-8046(4476)7957(12634)9769... InChIKey=SBVFWJWLGWCUFW-BDSVIIDHSA-N

- Is speed a concern?
- Benchmarks: i5 2.5 GHz CPU (single-core) SSD
- 99% of longest chains of ~100,000 proteins of PDB (up to ~16,000 atoms) converted to InChI for <=180 sec
- Average processing time ~ 3.8 sec (average size 2400 atoms)
- Still, there are molecules not converted to InChI for reasonable time...

- InChI was not designed with >> 1000 atoms in mind
- Though canonicalization and normalizations algorithms principally should work...
- and no problems were reported yet...
- several issues were already found by internal tests

- Renumbering tests
- ~70,000 max-length protein chains from PDB were tested, with 100 random atomic renumberings for each
- 14 failures detected so far
 - that is, 14 molecules from PDB give different InChI/Key's on re-numberings
- No final clarity yet
 - problem may lie in normalization (mobile H) rather then in canonicalization

- o InChI's are getting very long
- InChIKey in its current form may be too short to serve for all the large molecules people may start to play with
- Experimental (beta) large-mol InChI/Keys are isolated from others by using 'B'

Support of polymers

- Only simple polymers (no cross-linked, etc.)
- Source-based representation
- Structure-based representation

Known issues with polymers

- Issues on elucidation of canonical SRU
 - reported by Roger Sayle and John Mayfield, re-iterated today
 - BTW: explicitly stated in documentation (in part)

o Issue #1, simplified:

- -[-CH2CH2-]n- *NE* -[-CH2-]n-
- o But should it? Odd/even, etc., repeatability

o Issue #2:

- no polymer SRU "frame shift" analyzed when explicit end groups specified H2N-[-CH2-C(O)-NH-]n-CH2-C(O)OH NE H2N-CH2-[-C(O)-NH-CH2-]n-C(O)OH NE H2N-CH2-C(O)-[-NH-CH2-C(O)-]n-OH
- BTW: frame shift is of course supported when star atoms (*) are shown instead
 -[-CH2-C(O)-NH-]n- EQ *-[-C(O)-NH-CH2-]n-* EQ *-[-NH-CH2-C(O)-]n-*
- In principle, solvable
 - But solution seems to be far from nice
 - Further feedback desired (this meeting, discussions, opinions of polymer chemists?)

New "extensible" (IXA) API

- o IXA stands for "InChI Extensible API"
- Adds new API procedures including lowlevel functions to deal with atoms, bonds, etc.
- Code supplied by Digital Chemistry
 John Barnard with co-workers
- Ported to Linux
 with help of Pubchem team
 Evan Bolton, Paul Thiessen
- No problems reported (yet)

Support of safe multi-thread execution

- Allows one to significantly increase speed of InChI/Key generation while calling InChI Library on multi-CPU hardware (most of modern systems)
- Code changes supplied by Bio-Rad
 Karl Nedwed
- Porting/testing on Linux with help of Pubchem team Evan Bolton, Paul Thiessen
- No problems reported (yet)

Current status

- To early to remove "experimental" label from both large molecules and polymers
- 1.051 intermediate release
 - to include fixes for several already found minor bugs & "features"
 - o may be launched on Fall 2017

Suggested near future updates

- 1.051 intermediate release
 - to include fixes for several minor
 bugs
 bugs
 - tentatively planned for Fall 2017

o Working groups

 Very rough estimate (0-5) of implementation effort

Tautomerism

- 3.5
- moderate to significant
- Organometallics 4.5
 - significant to monstrous
- Advanced large molecules 4.5
 - significant to monstrous (depend on canonicalization issues, HELM integration, ...)

 Very rough estimate of implementation effort

- QR-codes
- Mixtures

2

- minor
- 2.5
- minor to moderate

Other (no working-groups)

Enhanced stereo (following V3000)
 Collections, ABS/AND/OR

Relatively straightforward

Other (no working-groups)

o Longer InChIKey

- "codebreaking" sport
- anyway, 1st block is not a real issue
 - Tolerate ~1*10^9 entries
 - (Andrey Erin: 12 collisions per 27*10^9, theor. estimate is ~10)

o may be slightly increased in length

• 2nd block is what really counts!

Longer InChIKey

2nd block may really have problems

There are much things there already (think of carbohydrates!) ... people are trying to squeeze everything in there (polymers...mixtures...) and this likely will continue)

- Make 2nd block significantly longer
- - or just add 3rd car to the train?