
IUPAC International Chemical Identifier (InChI)

InChI version 1, software version 1.03 (2010)

InChI Source Code
Documentation

Stephen E. Hull, John M. Barnard and Daniel G. Thomas

Digital Chemistry Ltd.
30 Kiveton Lane
Todwick
Sheffield S26 1HL

john.barnard@digitalchemistry.co.uk

Prepared by Digital Chemistry Ltd. under contract to the InChI Trust

30 March 2011

InChI Source Code Documentation

Table of Contents
1 Introduction.. 6

1.1 Organization of Source Code Files...6
1.2 Organization of this Document..6
1.3 Conventions Used.. 7

2 Overall Control... 8

3 Compilation Options... 9

4 Command Line Parameters... 13

5 API Functions.. 14

6 Reading MOL Files.. 14

7 Production of InChI.. 14

8 Normalising Structures... 15
8.1 Changes to the Structure Drawing (Technical Manual – Step 1)..15
8.2 Disconnection of Salts (Technical Manual – Step 2)...15
8.3 Disconnection of Metals (Technical Manual – Step 3)..15
8.4 Elimination of Radicals (Technical Manual – Step 4)..15
8.5 Removal of Protons from Charged Heteroatoms (Technical Manual – Step 5.1)...........................15
8.6 Removal of Protons from Neutral Heteroatoms (Technical Manual – Step 5.2)..............................16
8.7 Addition of Protons to Reduce Negative Charge (Technical Manual – Step 5.3)............................16
8.8 Detection of Tautomerism (Technical Manual – Step 6.1)..16
8.9 Detection of Movable Positive Charges (Technical Manual – Step 6.2)...16
8.10 Additional Normalisation (Technical Manual – Step 6.3)..16

9 Handling Isotopic H and Heavy Atom Isotopes..17

10 Handling Stereochemistry..18

11 Canonicalisation of Structures... 20
11.1 Connection Tables in Canonicalisation (Level 1)..21
11.2 Symmetry in Canonicalisation...23
11.3 ‘Pathological’ Structures (Level 2)..23
11.4 Fixed H Layer (Level 3)..25
11.5 Isotope Layer (Level 4)... 25
11.6 Normalisation (Mobile H) Layer (Level 5)...26
11.7 Mobile H with Isotopes Layer (Level 6)...26
11.8 Fixed H Layers (Levels 7 and 8)...26

12 Hashing Algorithms and Key Generation...27

13 Overall Control Functions.. 28
13.1 GetStdINCHI and GetINCHI...28
13.2 GetINCHI1.. 28
13.3 ExtractOneStructure...28

14 Basic Connection Table Functions...29
14.1 SetAtomProperties.. 29
14.2 SetBondProperties.. 29
14.3 SetAtomAndBondProperties...29

2

InChI Source Code Documentation

14.4 SetNumImplicitH... 29
14.5 get_num_H .. 29
14.6 Extract0DParities.. 29
14.7 ProcessOneStructure...29
14.8 CreateOneStructureINChI...29
14.9 PreprocessOneStructure..30
14.10 DuplicateOrigAtom..30
14.11 CreateOneComponentINChI...30
14.12 Create_INChI.. 31

15 Structure Standardisation Functions..32
15.1 fix_odd_things... 32
15.2 DisconnectSalts.. 32
15.3 bIsMetalToDisconnect.. 32
15.4 bIsAmmoniumSalt .. 32
15.5 DisconnectAmmoniumSalt ...32
15.6 bIsMetalSalt ... 32
15.7 DisconnectMetalSalt... 32
15.8 bMayDisconnectMetals...32
15.9 MarkDisconnectedComponents..32
15.10 bNumHeterAtomHasIsotopicH..33
15.11 bCheckUnusualValences..33
15.12 detect_unusual_el_valence..33
15.13 DisconnectMetals .. 33
15.14 DisconnectOneLigand..33
15.15 DisconnectInpAtBond...33
15.16 RemoveInpAtBond..33
15.17 ReconcileAllCmlBondParities...33
15.18 remove_terminal_HDT..34
15.19 MarkRingSystemsInp..34

16 Tautomerism Functions... 35
16.1 mark_alt_bonds_and_taut_groups ..35
16.2 AllocateAndInitBnStruct..35
16.3 AllocateAndInitBnData ... 35
16.4 SetForbiddenEdges..35
16.5 fix_special_bonds...35
16.6 TempFix_NH_NH_Bonds...36
16.7 BnsAdjustFlowBondsRad...36
16.8 RunBalancedNetworkSearch..36
16.9 SetBondsFromBnStructFlow...36
16.10 RestoreBnStructFlow.. 36
16.11 BnsTestAndMarkAltBonds..36
16.12 nMinFlow2Check..37
16.13 nMaxFlow2Check... 37
16.14 nCurFlow2Check..37
16.15 bNeedToTestTheFlow..37
16.16 bSetFlowToCheckOneBond...37
16.17 bSetBondsAfterCheckOneBond...37
16.18 SetBondsFromBnStructFlow...37
16.19 RemoveNPProtonsAndAcidCharges..37
16.20 SimpleRemoveHplusNPO...38
16.21 GetAtomChargeType.. 38
16.22 AddOrRemoveExplOrImplH..38
16.23 HardRemoveHplusNP..38
16.24 SimpleRemoveAcidicProtons..38
16.25 HardRemoveAcidicProtons...38

3

InChI Source Code Documentation

16.26 SimpleAddAcidicProtons...38
16.27 HardAddAcidicProtons..38
16.28 MarkChargeGroups..38
16.29 MarkTautomerGroups...38

16.29.1 Handle 1-3 Tautomers...38
16.29.2 Handle 1,3 Keto-Enol Tautomerism...39
16.29.3 Handle 1,5 Tautomerism...39
16.29.4 Handle 4-Pyridinol Ring Tautomerism...39
16.29.5 Handle Pyrazole Tautomerism..39
16.29.6 Handle Tropolones..39

16.30 FindAccessibleEndPoints...39
16.31 RegisterEndPoints..39
16.32 SetTautomericBonds.. 39
16.33 nGet12TautIn5MembAltRing..39
16.34 DFS_FindTautInARing..40
16.35 Check5MembTautRing...40
16.36 GetChargeType..40

17 Stereochemistry Functions..41
17.1 set_stereo_parity..41
17.2 set_atom_iso_sort_keys...41
17.3 make_iso_sort_key... 41
17.4 CountTautomerGroups... 41
17.5 inp2spATOM... 41

18 Canonicalisation Functions.. 42
18.1 GetBaseCanonRanking..42
18.2 CreateNeighList.. 43
18.3 FillOutAtomInvariant2... 43
18.4 CompChemElemLex...44
18.5 SetInitialRanks2.. 44
18.6 CompAtomInvariants2.. 44
18.7 CompAtomInvariants2Only...44
18.8 DifferentiateRanks2.. 44
18.9 DifferentiateRanks4.. 45
18.10 insertions_sort.. 45
18.11 CompRank.. 45
18.12 CompRanksOrd.. 45
18.13 SortNeighLists2.. 45
18.14 insertions_sort_NeighList_AT_NUMBERS...45
18.15 SetNewRanksFromNeighLists..45
18.16 CompNeighListRanksOrd...46
18.17 CanonGraph... 46

18.17.1 Initialisation Section...46
18.17.2 Preliminary Section to Get Initial Partition..47
18.17.3 Set Up For Testing Further Partititions..48
18.17.4 Loop to Find Best Value of Partition rho..48
18.17.5 Backtrack .. 48
18.17.6 Found a Better rho or an Isomorphism..49
18.17.7 Deal with Potentially Better Value for rho..49
18.17.8 Found a Better rho...49
18.17.9 Deal With Isomorphism..49
18.17.10 Backtrack After Isomorphism...50
18.17.11 Prepare to Start from Backtrack...50
18.17.12 Get Next Node for Testing...50
18.17.13 Test Potential New Partition..50
18.17.14 Found a Potential New Partitioning..50

4

InChI Source Code Documentation

18.17.15 Backtrack...51
18.17.16 Code with Unknown Purpose..51
18.17.17 Prepare Information for Function Return After Successful Computation of rho...........51
18.17.18 Tidy Up Before Function Return..51
18.17.19 UnorderedPartitionMakeDiscrete...51

18.18 PartitionIsDiscrete...52
18.19 PartitionSatisfiesLemma_2_25...52
18.20 PartitionGetFirstCell.. 52
18.21 CellGetMinNode... 52
18.22 PartitionColorVertex.. 52
18.23 CtPartFill... 52
18.24 CtPartCopy... 52
18.25 CtPartInfinity... 52
18.26 PartitionCopy.. 53
18.27 CellMakeEmpty... 53
18.28 GetUnorderedPartitionMcrNode...53
18.29 UpdateCompareLayers...53
18.30 CtPartCompare... 53
18.31 PartitionGetMcrAndFixSet..53
18.32 PartitionGetTransposition...53
18.33 TranspositionGetMcrAndFixSetAndUnorderedPartition..53
18.34 UnorderedPartitionJoin...53
18.35 GetUnorderedPartitionMcrNode...54
18.36 nGetMcr2 ... 54
18.37 FixCanonEquivalenceInfo...54
18.38 CompRanksOrd.. 54
18.39 SortedEquInfoToRanks..54

19 InChI Output Functions.. 55
19.1 FillOutINChI.. 55
19.2 SetConnectedComponentNumber..55
19.3 SortAndPrintINChI.. 55
19.4 CompINChINonTaut2... 55
19.5 CompINChITaut2..55
19.6 CompINChI2... 56
19.7 CompareHillFormulasNoH..56
19.8 CompareTautNonIsoPartOfINChI...56
19.9 CompareInchiStereo...57
19.10 OutputINChI2.. 57
19.11 OutputINChI1.. 57
19.12 inchi_ios_print... 57

20 Key Generation Functions...58
20.1 GetStdINCHIKeyFromStdINCHI...58
20.2 GetINCHIKeyFromINCHI..58
20.3 AddMOLfileError... 58
20.4 GetCanonLengths... 58

21 Files and Functionality... 59

22 Glossary of Terms Used in InChI Software..60

23 References.. 61

5

InChI Source Code Documentation

1 Introduction

This document has been prepared as a “guide” to the InChI source code, with the aim of allowing developers

who are maintaining, modifying or extending it to understand the basis on which it has been written, the

principles underlying its organization and the main algorithms it implements. It is not the aim of this

document to reverse engineer the code, nor to provide a complete functional specification for InChI, but

rather to provide an insight into how the code is constructed and what algorithms are used.

The document outlines the main control paths within the code and points developers to the areas of code

that are relevant to particular functionality. It deliberately does not duplicate the information in the Technical

Manual (Stein et al., 2010), but where appropriate makes reference to relevant sections of the Technical

Manual, which should therefore be read in conjunction with it. Other relevant documents are also referenced

where appropriate, and are listed in Section 23.

No program documentation can ever be considered truly comprehensive, and though we have attempted to

make this document as complete as possible within the time constraints imposed on its preparation, some

aspects of the code are inevitably discussed in less detail than others. It should be noted that this document

has not been written by the original authors of the InChI software, though where possible the original authors

have been consulted for clarification on certain points. Due to constraints on their availability, it has not been

possible to obtain detailed clarification on some aspects of the code, in particular the use of "balanced

network search" for tautomer normalization (see sections 16.8 to 16.18),and this is therefore described in

outline only. Assumptions we have made here and elsewhere are noted in the text, though it is possible that

some misinterpretations of the code may have crept in, and this should be borne in mind by readers.

1.1 Organization of Source Code Files

The InChI code consists of approximately 112,000 lines of C code containing approximately 970 functions

and 130 macros in 37 source files. Generally the individual source files contain related functions. A list of

source files, with notes on their contents, is given in Section 22.

1.2 Organization of this Document

Sections 2 to 4 of this document provide a general discussion of aspects of the source code, while Sections

5 to 12 each describe one of the principal high-level operations, identifying the actual functions involved in

implementing them. Sections 13 to 20 describe the more important individual functions in some detail,

grouped according to the high-level operations they are involved with. Sections 21 to 23 are in the nature of

appendices, summarising the code in each source file, and providing a glossary and bibliographic

references.

6

InChI Source Code Documentation

1.3 Conventions Used

Within this document the following conventions are used:

Source code filenames are shown in bold type.

Source code function names are shown in italics.

Identifiers and labels used in the source code are shown underlined.

7

InChI Source Code Documentation

2 Overall Control

The InChI code provides functionality that can be divided into several distinct areas. These are broadly:

1. An API that can be called by user written programmes. See the InChI API Reference (IUPAC 2010) for

further details.

2. Reading MOL files (Symyx, 2010) into the internal program structures.

3. Production of InChI strings and InChIKey hash codes.

4. Normalising structures.

5. Handling isotopic H and heavy atoms.

6. Handling stereochemistry.

7. Canonicalisation of structures.

A general outline of each of these functions is given in its own section below. Further sections describe

individual functions in the code in greater detail.

The exact route taken through the code is determined by command line parameters.

Because the InChI has a defined format and is designed to produce consistent results it is important that no

changes are made to the code that cause it to give different results from earlier versions unless there were

bugs in the earlier. This is seen as particularly important in structure canonicalisation where any changes to

the code should give results that are provably identical to the earlier version. This is perhaps less significant

for the other main areas of the system (normalisation/tautomerism, isotope handling, stereochemistry) where

there may be possible changes in requirements, interpretation or theoretical advances. Note that even a

comprehensive test suite of examples such as outlined in Digital Chemistry (2010a) would not be a

guarantee that any changes result in equivalent code, although a test suite may highlight problems caused

by changes to the system. Compliance with the test suite is a necessary but not sufficient condition for code

equivalence. Any changes should be in accord with the principles set out by Fowler (1999). Some aspects of

the work that needs to be undertaken if major changes were to be made to the InChI software have been

discussed in Digital Chemistry (2010b).

8

InChI Source Code Documentation

3 Compilation Options

Unless otherwise stated no specific compilation options have been specified when describing the code

functions.

Many options are fixed and defined in the file mode.h. Some of these options are fixed by definitions in the

code and cannot be overridden at compile time (except by changing the code itself). It seems that

compilation options have often been used as a means of recording changes from version to version as the

system has developed. An alternative might have been to use a source control system.

Options available are:

Option Comment

ENABLE_ENGINEERING_OPTIONS Specifies that extra command line parameters are
allowed. (Used in several functions in ichiparm.h.)

USE_STDINCHI_API Seems to be set by default to allow non-standard InChI
command line parameters.

INCHI_LIBRARY Defined when compiling as an API.

INCHI_LIB Seems to be always defined. Used to decide whether to
generate messages and for output options.

READ_INCHI_STRING Definition tied to INCHI_LIB. Comment in code is ‘input
InChI string and process it’, but it is not clear what this
does.

INCHI_STANDALONE_EXE Defined when compiling as a command line executable.

INCHI_MAIN Defined when compiling as a DLL.

_USRDLL Defines exported functions for DLL.

INCHI_ALL_CPP Allow C++ compilation/linkage of functions prototyped
in .h files (used in conjunction with definition
__cplusplus).

INCHI_ANSI_ONLY Switch that appears to depend on the compiler being
used (Microsoft or non-Microsoft?).

_DEBUG As specified by the compiler options. Appears to decide
whether breakpoint statements can be accessed for
convenience when debugging. Often used in conjunction
with bRELEASE_VERSION.

bRELEASE_VERSION Set to 1 for release version; 0 for debug.

9

InChI Source Code Documentation

CHECK_WIN32_VC_HEAP Enables heap checking. Normally switched off.

SEPARATE_CANON_CALLS Used to profile canonicalisation functions.

INCHIKEY_DEBUG Set to 2 if key debugging is required. Normally hard-
coded to zero.

DISPLAY_DEBUG_DATA Used in conjunction with
DISPLAY_DEBUG_DATA_C_POINT for debugging.

DISPLAY_DEBUG_DATA_C_POINT See DISPLAY_DEBUG_DATA.

NEVER Protects code that will never be compiled; presumably
should never be defined.

__UTIL_H__ Not used.

defined_NEIGH_LIST Not used.

INCHI_USETIMES Set when compiling to determine which version of the
function InchiClock to use.

DO_NOT_TRACE_MEMORY_LEAKS defined if memory leaks are to be traced.

TRACE_MEMORY_LEAKS set to 1 if leaks are to be traced.

MY_REPORT_FILE file associated with tracing memory leaks when not
using the Visual C++ debugger.

REPEAT_ALL looks like the number of repeats required and is
presumably for timing tests.

USE_ALLOCA determines which versions of qmalloc and qfree should
be used. Always defined so that inchi_malloc and
inchi_free are used.

ADD_NON_ANSI_FUNCTIONS adds language extensions if not provided by build
environment. Not normally required.

ADD_CMLPP allows CML files to be input. May be overridden at
compile time. Normally not set. Definitions of
USE_CMLPPDLL and
MSC_DELAY_LOAD_CMLPPDLL are triggered if
ADD_CMLPP is set, but appear to have no bearing on
the code.

CML_DEBUG Debug output for CML.

QUEUE_QINT Sets which queuing functions to be used in search
algorithms.

MOL_PRESENT Sets which type of MOL file is being read (query, react
or CPSS). By default none of these are set.

EXTR_FLAGS Defines how errors in MOL files are to be reported.

10

InChI Source Code Documentation

EXTR_MASK Defines how errors in MOL files are to be reported.

ENTITY_REFS_IN_XML_MESSAGES Always set on.

RESET_EDGE_FORBIDDEN_MASK Unknown purpose in BNS code. Set and never changed
in files ichi_bns.c and ichirvrs.h.

FIX_CPOINT_BOND_CAP Bug fix in file ichi_bns.c.

CHECK_TACN File ichi_bns.c. Coment ‘prohibits replacing (-) on N
with H unless H can be moved to N’. Presumed bug fix.

ALLOW_ONLY_SIMPLE_ALT_PATH File ichi_bns.c. Comment ‘allow alt. path to contain
same bond 2 times (in opposite directions)’.

BNS_MARK_ONLY_BLOCKS File ichi_bns.c. Comment ‘find only blocks, do not
search for ring systems’.

KEEP_METAL_EDGE_FLOW Defined so that the function ForbidMetalCarbonEdges is
never called.

ALWAYS_SET_STEREO_PARITY It appears that this was used in testing to set the stereo
parity.

MAX_LOCAL_TGNUM Always set to zero and never used.

FIX_BASE26_ENC_BUG Appears to be a bug fix that is never used.

COUNT_ALL_NOT_DERIV Always set on. Looks like a bug fix.

ADD_CAPACITY_RADICAL Appears as a bug fix in file ichi_bns.h.

RI_ERR_ALLOC Determines how errors are dealt with. Mainly refers to
input errors, but is also used in BNS.

ALL_NONMETAL_Z Used to determine which atoms are allowed as the
central atom of a tautomeric system (function
is_Z_atom). Always set to restrict list to C, N, S, P, Sb,
As, Se, Te, Br, Cl, I, and to exclude B, O, Si, Ge, F, At.
(Technical Manual Table 6)

ALLOW_METAL_BOND_ZERO Always set to allow zero bonds to metals.

INIT_METAL_BOND_ZERO Always set so that metal atoms take their prescribed
valence and not zero.

TAUT_OTHER Seems to be always set. Indicates that tautomeric ring
systems should be found.

INCLUDE_NORMALIZATION_ENTRY_POINT Comment in code is ‘disabled extra external calls to
InChI algorithm’, and it is always disabled.

INCHI_CANON_USE_HASH Is not set. Affects hashing in file ichican2.c.

FIX_ADD_PROTON_FOR_ADP Never used.

MOVE_CHARGES_FROM_HETEREO_TO_METAL Never used.

11

InChI Source Code Documentation

FIX_P_IV_Plus_O_Minus Fix always used.

INCHI_ZFRAG Never used. Appears to add dummy atom types for bond
types.

OLD_ITEM_DISCOVERY Never set. Presumably the code protected by the
definition is not required any more.

REMOVE_CUT_DERIV Always set on. Code comment is ‘remove disconnected
derivatizing agents’.

DISPLAY_ORIG_AT_NUMBERS Always set to display original atom numbers.

SELF_TEST Appears to protect unused testing code.

The file mode.h defines some options grouped by type and generally with individual comments. Definitions

within the groups headed ‘bug fixes in v1.00’, ‘bug fixes in post-v1.00’, ‘bug fixes in post-v1.02b’, ‘additions to

v1.00’, ‘Normalization settings’, ‘stereo’, ‘added tautomeric structures’, ‘define canonicalization modes’,

‘questionable behavior’, ‘canonicalization settings I’, ‘canonicalization settings II’ and ‘torture test’ are not

further detailed here because they are not likely to be changed for future builds.

Some other definitions are well commented in mode.h, and are not further detailed here.

Some options are compiler dependent (e.g. Borland) and are not listed here.

Note that several blocks of code are protected by ‘#if 0’ directives, and so will never be compiled. The code

could be somewhat simplified by removing conditional compilations which will never occur given the hard

definitions in the code.

12

InChI Source Code Documentation

4 Command Line Parameters

Unless otherwise stated no specific command line parameters have been specified when describing the

code functions.

Note that some of the command line parameters have no effect unless the compilation option

ENABLE_ENGINEERING_OPTIONS is specified. These options appear to be have been included for

debugging purposes during code development and are as follows:

ACIDTAUT: ALT ANNPLAIN ANNXML

AUXFULL AUXINFO: AUXMAX AUXMIN

CMP CMPNONISO COMPRESS DCR

DCR DDSRC DISCONMETAL: DISCONMETALCHKVAL:

DISCONSALT: DoDRV DoneOnly DoR2C

DSB EQU EQUNONISO EXACT

FB2OFF FBOFF FixRad FixSp3bugOFF

FNUDOFF FULL InChI2InChI KeepBalanceP

MERGE MERGESALTTG: MIN MOLFILENUMBER

MOVEPOS: NoADP NOHDR NOUUSB

NOUUSC NoVarH O: ONLYEXACT

ONLYFIXEDH ONLYNONISO ONLYRECMET ONLYRECSALT

OP: OutputANNPLAIN OutputANNXML OutputPLAIN

OutputXML PGO PLAIN PW

RECONMETAL: RSB: SASXYZOFF SCT

SDFID SdfSplit SplitInChI SPXYZOFF

TAUT UNCHARGEDACIDS: XML

13

InChI Source Code Documentation

5 API Functions

The InChI API is described in IUPAC (2010). The functions can be called as described in that document.

The following outline C++ code has been used in running the test examples referred to in the current

document.

6 Reading MOL Files

MOL files are read and converted to internal InChI connection tables by the function MolfileToInchi_Atom.

Function e_read_sdfile_segment is used to read the MOL file and put data into an intermediate structure,

which is then converted to an InChI inchi_Atom structure by the function mol_to_inchi_Atom. The function

mol_to_inchi_Atom_xyz looks at the MOL file co-ordinates to determine whether the structure is zero-, two-

or three-dimensional.

7 Production of InChI

The InChI identifier and auxiliary information (if required) are constructed in the function FillOutINChI. The

function SortAndPrintINChI is used to sort the separate InChI strings for components of the overall structure.

14

// declare input structures
inchi_Input inp;
inp.num_atoms = nAtoms;

// allocate and initialise memory
inp.atom = (struct tagInchiAtom*)malloc(inp.num_atoms * sizeof inchi_Atom);
memset(inp.atom, 0, inp.num_atoms * sizeof inchi_Atom);
inp.num_stereo0D = 0;
inp.stereo0D = NULL;

// set command line options
inp.szOptions = "/FIXEDH";

// set up connection table in structure out
(…)

// generate InChI
inchi_Output out;
int ret = GetINCHI(&inp, &out);

// generate InChI key
char cKey[50];
GetStdINCHIKeyFromStdINCHI(out.szInChI, cKey);

// tidy up memory
free(inp.atom);
FreeINCHI(&out);

InChI Source Code Documentation

8 Normalising Structures

Section IVb of the InChI Technical Manual discusses the steps that are taken to normalise chemical

structures for the purposes of InChI so that in most cases equivalent structures produce the same InChI.

Normalisation is divided into several interconnected processes, some of which are deeply intertwined within

the code.

The following sections point to where each step of normalisation is carried out.

8.1 Changes to the Structure Drawing (Technical Manual – Step 1)

Function fix_odd_things is used to change the input connection table as specified in Technical Manual

Table 1. Function remove_ion_pairs is used to detect and alter ion pairs as specified in Technical

Manual Table 2.

8.2 Disconnection of Salts (Technical Manual – Step 2)

Function DisconnectSalts is used to disconnect metal and ammonium salts.

8.3 Disconnection of Metals (Technical Manual – Step 3)

Function DisconnectMetals is used to disconnect metals that are not considered to be acid salts.

8.4 Elimination of Radicals (Technical Manual – Step 4)

Bonds are fixed according to the rules of Technical Manual Table 1 in Function SetForbiddenEdges.

Radical cancellation as shown in the Technical Manual (Figures 9a and 9b) does not appear in the

library. This is presumably explained by the comment in the manual that this is considered to be an

extension for MOL files only and is not handled by the main library code, but as specific code for

reading MOL files.

8.5 Removal of Protons from Charged Heteroatoms (Technical Manual – Step 5.1)

Function SimpleRemoveHplusNPO is used to remove the protons followed by HardRemoveHplusNP

to remove the protons where there are alternating bonds. The example of “hard” proton removal

shown in Figure 10 in the Technical Manual is dealt with by the function

RemoveNPProtonsAndAcidCharges. The functions SimpleRemoveAcidicProtons and

HardRemoveAcidicProtons perform similar functions for protons on acids.

15

InChI Source Code Documentation

8.6 Removal of Protons from Neutral Heteroatoms (Technical Manual – Step 5.2)

Removal of protons is done by the function SimpleRemoveAcidicProtons.

8.7 Addition of Protons to Reduce Negative Charge (Technical Manual – Step 5.3)

Functions SimpleAddAcidicProtons and HardAddAcidicProtons are used to add protons.

8.8 Detection of Tautomerism (Technical Manual – Step 6.1)

The process of tautomer detection makes use of algorithms for Balanced Network Searches (BNS)

described by Kocay & Stone (1993) and Kocay & Stone (1995) (as referenced in the code).

The algorithm in the function BalancedNetworkSearch is run iteratively from the function

RunBalancedNetworkSearch to detect alternate paths and, if any are detected, to mark the bonds in

those paths as alternate. The information stored in the BNS structure is used to check that any

potential tautomeric structure detected at a later stage is actually tautomeric.

Function MarkTautomerGroups controls the detection of tautomers. (See description of

MarkTautomerGroups below for description of how each type of tautomer is handled.) The method is

to find a possible tautomeric group, check that it is actually contains the correct alternating path and

then set the required bonds to alternating with the function SetTautomericBonds. The functions used

to check the alternating path all use the BNS to do the checking.

During the checking of alternating paths the program may add fictitious nodes to the BNS in order to

check for alternating bond paths (Tchekhovskoi, 2011). This is done within the function

bSetBnsToCheckAltPath using bAddNewVertex, after which the function RunBalancedNetworkSearch

is called again to check on any new alternate paths.

8.9 Detection of Movable Positive Charges (Technical Manual – Step 6.2)

Function HardRemoveHplusNP is used to move positive charges and then the methods used in Step

6.1 are applied to detect tautomerism. HardRemoveHplusNP also uses the BNS to detect alternating

paths along which charges can be moved. Note that the Technical Manual Figure 15 fictitious

structures are stored in the BNS, not in the connection table.

8.10 Additional Normalisation (Technical Manual – Step 6.3)

Function MarkChargeGroups is used to delocalise charges for Step 6.3 case (1).

Function MergeSaltTautGroups is used to delocalise H atoms and negative charges for Step 6.3 case

(5).

16

InChI Source Code Documentation

9 Handling Isotopic H and Heavy Atom Isotopes

As described in the Technical Manual Section IVc, heavy atom isotopes are handled as an atom property,

and are used to colour atoms at the appropriate canonicalisation levels (4, 6 and 8). The function

SetAtomAndBondProperties sets up num_H and the num_iso_H array for each atom where there are H

atoms attached to the heavy atom. num_H stores the total number of H atoms attached to the heavy atom

and num_iso_H stores the counts for the three isotopes of hydrogen. The function remove_terminal_HDT is

used to remove H atoms included as specific atoms in the CT and add them to the H atom counts for the

heavy atom. Bridging H atoms are not removed by this function.

17

InChI Source Code Documentation

10 Handling Stereochemistry

Stereochemical information can be made available to InChI in one of two ways. Either directly specified in

the MOL file (so-called 0D parity – see the file inchi_api.h for code comments) or derived from the atom co-

ordinates. 0D parities are used if no co-ordinates are specified.

The input co-ordinates supplied for the atoms are used to decide on stereochemistry. If no co-ordinates are

supplied, stereochemistry cannot be decided for bond-centred stereochemistry. Up/down bonds are only

used to decide atom-centred stereochemistry (including allenes).

Function set_stereo_parity is called to assign stereo information to atoms and bonds from the co-ordinates.

The code treats allenes and cumulenes by analogy with atom stereocentres and bond stereochemistry.

Chains containing an even number of cumulated double bonds are considered as allenes and chains

containing an odd number of cumulated double bonds are considered as cumulenes.

The function set_stereo_bonds_parity detects allenes and cumulenes (Technical Manual Figure 26) and

checks that the atoms involved are suitable for bond stereochemistry according to the rules in the Technical

Manual Figure 21 – 23 and Table 7. The function also deduces the parity for double bonds (and cumulenes).

Function bCanInpAtomBeAStereoCenter detects whether a central atom is a potential stereocentre

according to the rules in the Technical Manual Table 8, applies the rules for correct 2D drawing given in

Technical Manual Tables 9 and 10, and assigns the parity of the centre if possible. The function

set_stereo_atom_parity is used to calculate the parity for either 2D or 3D structures. In 3D structures the

given z co-ordinates are used; in 2D structures the up/down nature of the bonds is used to calculate the z co-

ordinates. A stereo centre may have three or four neighbours; for centres with three neighbours a dummy

fourth neighbour is created to represent H (or a lone pair). The function Get2DtetrahedralAmbiguity is used

to decide on the rules in Tables 9 and 10. The code also checks that the atoms surrounding the stereo

centre have co-ordinates that are sufficiently distinct to allow meaningful determination of stereochemistry

using function triple_prod_and_min_abs_sine2 which also determines whether the parity is odd or even.

Stereochemistry is assigned only tentatively at this point: it may turn out that neighbouring atoms to the

potential stereo centre or bond are in fact equivalent.

After the canonicalisation step the function UnmarkNonStereo is called to decide whether the atom or bonds

marked as stereocentres really do have stereochemistry. Atoms are considered as equivalent if they have

the same canonical rank.

18

InChI Source Code Documentation

In function Canon_INChI3 a test is carried out by inverting all the stereocentres (using function InvertStereo)

and testing using function CopyLinearCTStereoToINChIStereo to see if the structure has overall

stereochemistry and needs information in the ‘/m’ section of InChI (Technical Manual Figure 25).

19

InChI Source Code Documentation

11 Canonicalisation of Structures

Function GetBaseCanonRanking is used to control structure canonicalisation according to the flowchart

shown in the Technical Manual Figure 30 which shows how the various layers of InChI are related. Each

InChI layer corresponds to a stage in the canonicalisation process.

The basic process is to assign colours to each atom according to the information known at each layer and

then use that information to partition or re-partition the structure. The function CanonGraph implements the

canonicalisation algorithm of McKay (1981), although probably in a modified form. The naming of variables in

the code closely follows that of McKay (pages 68 to 72), although there are some changes.

For a general overview of canonicalisation processes see Augeri (2008); for a more specific overview of how

canonicalisation works in InChI see Apodaca (2006).

Each stage in the canonicalisation process follows a similar path (although much modified in most stages).

The first step is to use the function SetInitialRanks2, which sets atom ranks (colours) according to the

information available at the current layer about each atom. The function DifferentiateRanks2 is then called to

refine the current partitions according to the available colouring information. Finally the function CanonGraph

is called to refine canonical ordering according to the McKay algorithm.

The various canonicalisation stages are only called if there is information in the structure that will affect the

partitioning. For instance if there is no isotope information specified in the structure, the isotope stage is not

called.

The following table shows the canonicalisation stages and the connection tables input and output at each

stage.

Stage Stage Functionality Input CT Output CT

1 Initial graph with colours based on atom type. Always
required.

None Ct_NoH

2 Only required if Stage 1 produces non-equivalent atoms
with the same rank

None Ct_NoH

3 Equivalent atoms differ by fixed H count. Ct_NoH Ct_NoTautH

4 Equivalent atoms differ by isotope (fixed H or heavy
atom) in a non-tautomeric structure.

Ct_NoTautH Ct_NoTautHIso

5 Tautomeric structure. Ct_NoTautH Ct_Base

6 Tautomeric structure with isotopes. Ct_Base Ct_BaseIso

7 Only used if /FIXEDH is given as a command line Ct_NoTautH Ct_FixH

20

InChI Source Code Documentation

option.

8 Only used if /FIXEDH is given as a command line
option.

Ct_FixH Ct_FixHIso

The stage numbers indicate how the function CanonGraph is called for that stage. The call at each stage

takes the form CanonGraph0<n>. In fact these calls are always to the same function, the final digit is simply

to help in testing and debugging.

Note that stereochemistry is not dealt with as part of the general canonicalisation process but by a separate

process called from Canon_INChI3 (see Section 10 above).

11.1 Connection Tables in Canonicalisation (Level 1)

The structure ConTable is used to store connection tables during the canonicalisation step. Function

CtPartFill is used to populate the connection table. Functions CtPartCompare and CtFullCompare are

used to compare the connection tables.

The graph of the connection table is stored in the linear array Ctbl within the ConTable structure. As

an example of how the Ctbl array is used we take isopropylcyclopropane. The array contains one entry

for each atom and one entry for each bond. Since the structure has 6 atoms and 6 bonds the array

has 12 entries.

The following table shows how the structure is stored using an arbitrary numbering scheme.

Atom Bonds to Atoms Bonds to Earlier Atoms

1 2 -

2 1, 3, 6 1

3 2, 4, 5 2

4 3, 5 3

5 3, 4 3, 4

6 2 2

The information stored for each atom is atom number followed by bonds to lower numbered atoms

sorted in ascending order. In this case we have:

1, 2 1, 3 2, 4 3, 5 3 4, 6 2

giving an array populated as follows:

21

InChI Source Code Documentation

1 2 1 3 2 4 3 5 3 4 6 2

This is unambiguous because the first time an atom is mentioned it signals the start of the connections

for that atom.

The algorithm is looking for a canonical connection table from all the possible numberings of the atoms

in the structure.

As an example of how a canonical description of the structure is obtained, we take

methylcyclopropane as an example and list all 24 of the atom numbering permutations.

01: 1 2 1 3 1 2 4 1
02: 1 2 1 3 1 4 1 2
03: 1 2 1 3 1 2 4 1 = 01
04: 1 2 1 3 1 4 1 3
05: 1 2 1 3 1 4 1 2 = 02
06: 1 2 1 3 1 4 1 3 = 04
07: 1 2 1 3 2 4 1 2
08: 1 2 1 3 1 2 4 2
09: 1 2 1 3 2 4 2 3
10: 1 2 1 3 1 2 4 2 = 08
11: 1 2 1 3 2 4 2 3 = 09
12: 1 2 1 3 2 4 1 2 = 07

13: 1 2 1 3 1 2 4 3
14: 1 2 3 1 2 4 1 3
15: 1 2 1 3 1 2 4 3 = 13
16: 1 2 3 1 2 4 2 3
17: 1 2 3 1 2 4 1 3 = 14
18: 1 2 3 1 2 4 2 3 = 16
19: 1 2 1 3 4 1 2 3
20: 1 2 3 1 4 1 2 3
21: 1 2 1 3 4 1 2 3 = 19
22: 1 2 3 2 4 1 2 3
23: 1 2 3 1 4 1 2 3 = 20
24: 1 2 3 2 4 1 2 3 = 22

Duplications are indicated to the right of the list. The duplicates occur because the unsubstituted

atoms in the ring are equivalent and their numbers can be interchanged. The structure produces

InChI:

InChI=1S/C4H8/c1-4-2-3-4/h4H,2-3H2,1H3

that is equivalent to (22) in the list.

The InChI algorithm puts atoms of the same type in order of increasing valency. CanonGraph uses the

function PartitionColorVertex to sort atoms by their neighbour lists. In general partitions that have the

lowest neighbour numbers are preferred. This is significant for structures such as 2,3-dimethylbutane

where the methyl groups are all symmetrically equivalent, but once one of them has been given a

lower rank (that is it has been arbitrarily coloured differently to the others) they split into two pairs and

are no longer equivalent. The arbitrary colouring to break the symmetry would not have been

necessary had one of the atoms been different in some other way (e.g. by being of a different atomic

type). If we label the methyl groups attached to one of the 3-valent atoms as A and the methyl groups

attached to the other 3-valent atom as B, then we have the following possible orders starting with A for

the methyl atoms:

AABB
ABAB
ABBA

22

InChI Source Code Documentation

In order to canonicalise the structure correctly the same order must always be chosen.

11.2 Symmetry in Canonicalisation

When CanonGraph finds two equivalent permutations for the atoms of a structure it uses the

information to deduce symmetry. The function TranspositionGetMcrAndFixSetAndUnorderedPartition

is used to set up the Omega and Phi bitmaps and the theta_from_gamma array with symmetry

information. Note that most of the variable names used in the code are those specified by McKay,

although there may be some differences in the exact usage of some variables. The

theta_from_gamma array is later combined into the total symmetry array theta using the function

UnorderedPartitionJoin. Theta is then used to prune the tree by deciding which descriptions need not

be followed up.

As an example we take cyclohexane. Initially there is no reason to suppose any symmetry, so all the

atoms are potentially different starting points for the canonical structure. CanonGraph finds an initial

partition (rho) (assume the order is 126354) and then backtracks to find another equivalent partition.

This partition (which will be 162534) has the same atoms in the 1 and 4 positions but the atom in the 2

position has been swapped with the atom in the 6 position. Similarly atom 3 has been swapped with

atom 5. Since the function CtFullCompare has found these partitions to be identical, atom 2 must be

equivalent to atom 6 and atom 3 must be equivalent to atom 5. The next partition found (213645)

starts with atom 2 and is also equivalent to partition rho. This tells us that atoms 1 and 2 are

symmetrically equivalent (also atoms 3 and 6 are equivalent, and atoms 4 and 5 are equivalent). This

new symmetry information can be combined with the earlier information using the function

GetUnorderedPartitionMcrNode to deduce that all 6 atoms are equivalent, and that it is not necessary

to generate partitions starting with atoms 3 to 6. Hence the search tree has been pruned considerably.

11.3 ‘Pathological’ Structures (Level 2)

A comment in the code for the function FixCanonEquivalenceInfo points out that the following structure

requires an extra pass through CanonGraph.

This is because the McKay algorithm does not assign the two types of 2-valent atoms to separate

partitions at any stage of the canonicalisation process. It does however put them into symmetry

23

InChI Source Code Documentation

equivalent sets in theta and InChI uses this to generate the array nSymmRank in code following the

label exit_function in CanonGraph. The symmetry information is passed back to

GetBaseCanonRanking for further partitioning using the function FixCanonEquivalenceInfo, and if the

partitioning has not been completed according to the requirements of InChI, a further call to

CanonGraph is made.

On return from the first call to CanonGraph for the above example all the 2-valent atoms are given

rank 6 (the 3-valent atoms have rank 8), although nSymmRank correctly identifies two separate

groups of equivalent atoms (four ring atoms and two chain atoms). This information is used to re-set

the partition information for the second call to CanonGraph.

It is interesting to note that the following structure, which is often given as a counterexample for the

Morgan algorithm, also needs a second pass through McKay in the InChI code.

It appears that although McKay’s algorithm produces a canonical numbering of the structure, this is

not exactly what InChI requires. The second pass is to make sure that atoms are always partitioned

into separate equivalence classes as InChI requires. The author of the software (Tchekhovskoi, 2011)

has commented as follows on this point:

Sometimes the canonicalization makes canonical numbers within a set of

equivalent vertices non-contiguous, that is, for example, even though vertices A, B,

C are equivalent, their canonical numbers arranged in ascending order would not

necessarily be n, n+1, n+2. After the canonical partition has been found by the

McKay’s algorithm, there is a certain degree of freedom in assigning canonical

numbers left: one may assign new colors to each group of equivalent vertices and

rerun the canonicalization. This would keep the found sets of equivalent vertices

unchanged, but their canonical numbers might change. The newly assigned by

InChI colors are in order of the smallest canonical number within each set of

equivalent atoms, mcr(set). The difference between the new colors are chosen to

be equal to the numbers of vertices in the subsequent sets of equivalent vertices.

For example, if the found sets of equivalent vertices are A, B, C in this order, that is,

mcr(A) < mcr(B) < mcr(C)

then the new

24

InChI Source Code Documentation

color(A)=|A|

color(B)=|A|+|B|

color(C)=|A|+|B|+|C|

The new canonical numbers inside A will be 1-- color(A), inside B -- color(A)

+1..color(B), inside C -- color(B)+1..color(C). This approach is used in InChI to make

canonical numbers within each set of the equivalent vertices contiguous. This

property is used in subsequent calculations.

(Note: mcr stands for minimal class representative.)

In the example above there are three types of atom: 3-valent atoms (four atoms), 2-valent atoms in 6-

membered rings (eight atoms) and other 2-valent atoms (four atoms). InChI imposes the requirement

that symmetry equivalent atoms should be adjacent in the ordered atom list. McKay does not impose

this restriction. After the first pass through the algorithm the atoms appear in the following order (using

3, 6 and X to represent the three types of atom):

666X6XXX66663333

InChI imposes the extra requirement by colouring atoms in the different symmetry sets found by the

first pass through CanonGraph and, if necessary, calling CanonGraph again to re-canonicalise the

structure. After the second pass for this example the order is:

66666666XXXX3333

and the InChI requirement is now met.

11.4 Fixed H Layer (Level 3)

The next level for canonicalisation takes fixed H atoms into account. Amongst other things this takes

localised unsaturation into account, and allows InChI description to ignore bond types. This is

implemented in the code by a further call to CanonGraph after the graph itself has been canonicalised.

Before this call in the function GetBaseCanonRanking there is some code to set up H counts and to

re-partition on the basis of this information. The connection table produced by the earlier calls to

CanonGraph is passed to the new call for comparison purposes.

11.5 Isotope Layer (Level 4)

The code for the isotope layer is very similar in form to the Fixed H Layer. Isotope sort information is

set up and then the structure is re-partitioned before another call to CanonGraph. This pass through

CanonGraph is called when there is either heavy atom or fixed hydrogen isotope information. It is not

called if there are tautomeric groups in the structure (see Levels 5 and 6 below).

25

InChI Source Code Documentation

11.6 Normalisation (Mobile H) Layer (Level 5)

Level 5 uses the function FillOutAtomInvariant2 to set the information on tautomeric groups. This call

is similar to the call in Level 1 above, but with the tautomeric mode set. Then the function

SetInitialRanks2 is called as at the other levels. In the levels dealing with tautomerism the function

DifferentiateRanks4 is called to refine the partitioning information instead of DifferentiateRanks2 used

in the earlier layers. The two functions differ in the way that neighbour lists are used to sort the atom

list. CanonGraph is then called to produce the partition for this level.

11.7 Mobile H with Isotopes Layer (Level 6)

This level follows a similar path to Level 4 with functions SetInitialRanks2 and DifferentiateRanks2

being called to set up partitioning before the call to CanonGraph.

11.8 Fixed H Layers (Levels 7 and 8)

These two layers are only used if the user has specified command line parameters requesting them

and the code has been built to allow ‘Engineering Options’ (see section 4).

26

InChI Source Code Documentation

12 Hashing Algorithms and Key Generation

The code uses the SHA-256 standard (published by NIST in 2002) to hash the major and minor strings.

(Devine, 2006). According to the code comments this is freely distributed software (sha2.c and sha2.h).

Function GetINCHIKeyFromINCHI is used to control the generation of the key. The function first checks for a

valid input InChI string and then inserts information in the key in the following order:

Major Block (In the example: C3H4FI/c1-2-3(4)5/h2H,1H3 hashes to DKEPSVLMHRNWRG)

Minor Block – the stereochemistry (In the example: /b3-2+ hashes to NSCUHMNN)

Standard Flag (In the example: S)

Version (Hard coded: A)

Separator (-)

Protonation Flag (In the example: N because there is no protonation in this structure)

Terminator (ASCII 0)

InChI=1S/C3H4FI/c1-2-3(4)5/h2H,1H3/b3-2+

DKEPSVLMHRNWRG-NSCUHMNNSA-N

27

InChI Source Code Documentation

13 Overall Control Functions

The following sections describe some of the most significant functions in the InChI code and give a summary

of the flow of control.

13.1 GetStdINCHI and GetINCHI

Wrapper functions for obtaining InChI representations.

For definitions of the function parameters structures inchi_Input and inchi_Output see inchi_api.h.

13.2 GetINCHI1

Main calling function for converting CT to InChI.

1. Call parse_options_string to parse command line options and then call

ReadCommandLineParms to set up the global variables for the given options.

2. Parameter bStdFormat ensures that standard command line options are set regardless of

options set on command line. For bit values see ichi.h.

3. Call ExtractOneStructure to extract CT data from input structure ip into internal structure

orig_inp_data.

4. Call ProcessOneStructure to process to InChI.

5. Outputs as required.

6. Tidy up.

13.3 ExtractOneStructure

1. Call SetAtomProperties and SetBondProperties for each atom.

2. Call SetAtomAndBondProperties for each atom.

3. Call SetNumImplicitH to set up implicit H counts.

4. Call Extract0DParities to set up stereo parities input from the MOL file.

5. Log any errors in the structure using TreatReadTheStructureErrors.

28

InChI Source Code Documentation

14 Basic Connection Table Functions

14.1 SetAtomProperties

Set up the properties for an atom in at from ati. (Atom type, number, charge, radical, co-ordinates)

14.2 SetBondProperties

Set up the properties for a bond in at from ati and check for consistency. (Bond order, stereo,

neighbouring atom)

14.3 SetAtomAndBondProperties

Set valency and atom number. Replace explicit H with isotopic counts. Set relative mass for isotopes.

14.4 SetNumImplicitH

Loop over all the atoms to set up explicit H count for non-metallic atoms using call to get_num_H.

14.5 get_num_H

Calculate number of H atoms given the valency of the atom in the input structure and the standard list

of valencies allowed by InChI. Code to deal with radicals and special instances of N and S.

14.6 Extract0DParities

Set up stereo parities as passed in from the MOL file.

14.7 ProcessOneStructure

1. Call CreateOneStructureINChI to process the structure.

2. Call SortAndPrintINChI to sort the component InChI’s.

14.8 CreateOneStructureINChI

1. Call PreprocessOneStructure to disconnect bonds that do not obey the InChI rules (e.g. those

involving metals), alter other structural features that do not obey the InChI rules and determine

the number of components in the structure. This function orders the components according to

the number of atoms they contain. The final sorting can only be done after the InChI for each

component has been determined

2. Main component processing cycle – loop for each component

3. Call GetOneComponent to extract CT for this component

4. Call CreateOneComponentINChI to get InChI for this component

29

InChI Source Code Documentation

14.9 PreprocessOneStructure

Note that many of the activities of this function may result in the production of error or warning

messages via AddMOLfileError. These are not generally detailed individually.

1. Call DuplicateOrigAtom to obtain working structure (prep_inp_data).

2. Call fix_odd_things to put structure into standard InChI form.

3. Code for calls to FixAdjacentRadicals is effectively commented out by definition of

FIX_ADJ_RAD.

4. Call DisconnectSalts to disconnect metal and ammonium salts.

5. Call bMayDisconnectMetals to check if there are any metal bonds that still need disconnecting.

6. If salts have been disconnected, use ReconcileAllCmlBondParities to reconcile bond parities.

7. Call MarkDisconnectedComponents to identify the components and mark the component

number of each atom.

8. Call bNumHeterAtomHasIsotopicH to count the number of implicit and explicit isotopic H atoms

and set global flags.

9. If call to bCheckUnusualValences detects unusual valency, set flag. There is a comment in the

code that this ‘should be called before metal disconnection’; presumably the call to

bMayDisconnectMetals above did not do the actual disconnection but only marked bonds for

disconnection.

10. If bonds need to be disconnected in a co-ordination compound, MarkDisconnectedComponents

is called again to re-assign atoms to components.

11. DisconnectMetals is called to do the disconnection.

12. Reset bond parities for disconnected structure.

13. Call ReconcileAllCmlBondParities to reconcile parities that might have changed as a result of

metal disconnection.

14.10 DuplicateOrigAtom

Copy atom properties.

14.11 CreateOneComponentINChI

1. Call to Create_INChI to create InChI for component.

2. Call to SetConnectedComponentNumber to set component numbers of atoms in current

component.

3. Tidy up and error processing.

30

InChI Source Code Documentation

14.12 Create_INChI

Main chemical and canonical ranking function.

1. Call remove_terminal_HDT to remove explicit H atoms.

2. Call MarkRingSystemsInp to mark which ring system each atom belongs to.

3. Call mark_alt_bonds_and_taut_groups to perform main normalisation process.

4. Call inp2spATOM to set up data for examining tautomerism.

5. Call set_stereo_parity to set stereo parities from 3D co-ordinates.

6. Call GetBaseCanonRanking to do canonicalisation.

7. Call set_stereo_parity to set stereo parities.

8. Call set_atom_iso_sort_keys to set up isotopic sort keys.

9. Count tautomer groups with CountTautomerGroups and set up tautomer structures.

10. Call to FillOutINChI controls the production of the InChI string.

31

InChI Source Code Documentation

15 Structure Standardisation Functions

15.1 fix_odd_things

Loop over all atoms to fix structure drawing. The code contains extensive comments referring to Table

1 in the Technical Manual.

15.2 DisconnectSalts

1. Use bIsAmmoniumSalt to detect ammonium salts, and DisconnectAmmoniumSalt to disconnect

if discovered.

2. Use bIsMetalSalt to detect metal salts, and DisconnectMetalSalt to disconnect if discovered.

15.3 bIsMetalToDisconnect

Checking if metal atom still needs disconnecting.

15.4 bIsAmmoniumSalt

Implementation of ammonium salt detection rules (Technical Manual page 21).

15.5 DisconnectAmmoniumSalt

Performs disconnection of ammonium salt according to rules (Technical Manual page 21).

15.6 bIsMetalSalt

Implementation of metal salt detection rules (Technical Manual page 21).

15.7 DisconnectMetalSalt

Performs disconnection of metal salt according to rules (Technical Manual page 21).

15.8 bMayDisconnectMetals

Uses bIsMetalToDisconnect to detect metals that still need disconnecting (rule on page 22 of

Technical Manual).

15.9 MarkDisconnectedComponents

1. Initial loop to mark atoms in components with component number.

2. Count the number of atoms in each component.

3. Sort the components to put the largest first.

32

InChI Source Code Documentation

4. Renumber the components and adjust the component number for each atom.

15.10 bNumHeterAtomHasIsotopicH

For common non-metals, count the number of implicit and explicit isotopic H atoms, taking charge and

radicalisation into account.

15.11 bCheckUnusualValences

Call detect_unusual_el_valence for each atom and add error message if unusual valency found.

15.12 detect_unusual_el_valence

Loop through known valencies for atom type to detect unusual valency. Return non-zero if valency is

unusual.

15.13 DisconnectMetals

1. Check for any metal bonds that need breaking.

2. Replace implicit H on metals with explicit H.

3. For metals, call DisconnectOneLigand to remove the ligand bonds one at a time.

4. Use DisconnectOneLigand to disconnect metal-metal bonds.

15.14 DisconnectOneLigand

1. Uses DisconnectInpAtBond to disconnect bonds.

2. If the disconnected bond is to a common non-metal (excluding C), adjust the charge (if possible)

of the ligand atom to make the valency of the atom “correct”, and adjust the charge on the metal

to compensate for this.

15.15 DisconnectInpAtBond

Uses RemoveInpAtBond to remove bond from CT.

15.16 RemoveInpAtBond

Remove bond from atom’s bond array and adjust atom and bond stereo parities if necessary.

15.17 ReconcileAllCmlBondParities

Reconciliation of bond parities.

33

InChI Source Code Documentation

15.18 remove_terminal_HDT

Remove explicit H atoms from connection table and store them as attributes of the heavy atoms. Make

allowances for stereochemical implications of removed atoms. There are some exceptional H atoms

that remain explicit (for instance H-H).

15.19 MarkRingSystemsInp

Sets nRingSystem for each atom. Note that the ring systems numbers start at one and that non-ring

atoms are assigned to a ring containing a single atom. The algorithm distinguishes ring systems, so

fused rings are allocated to the same system. Spiro-ring systems count as fused.

34

InChI Source Code Documentation

16 Tautomerism Functions

16.1 mark_alt_bonds_and_taut_groups

1. Call AllocateAndInitBnStruct to set up BNS (balanced network structure).

2. Call AllocateAndInitBnData to allocate BNS data memory.

3. Call SetForbiddenEdges to protect bonds.

4. Call BnsAdjustFlowBondsRad to deal with radicals and aromatic bonds.

5. Call BnsTestAndMarkAltBonds to mark bonds that are affected by tautomerism or

normalisation.

6. Call RemoveNPProtonsAndAcidCharges to remove protons on charged heteroatoms.

7. Call MarkChargeGroups to set potentially charged groups.

8. Process charged groups.

9. Code comments ‘Main Cycle Begin’.

10. Call MarkTautomerGroups to look for potentially tautomeric groups.

11. After the end of the ‘main cycle’ Call MergeSaltTautGroups to combine groups where H atoms

and /or negative charges need to be further delocalised.

16.2 AllocateAndInitBnStruct

1. Set up memory for BNS.

2. Convert alternating bonds to single.

3. Add information to BNS about vertices (atoms) and edges (bonds) in network.

16.3 AllocateAndInitBnData

Allocate memory for BNS data.

16.4 SetForbiddenEdges

1. Protect single bonds to acetyl and nitro groups by the rules 1 and 2 in Table 5 of the InChI

Technical Manual.

2. Call fix_special_bonds to set remainder of fixed bonds specified in Table 5.

3. Call TempFix_NH_NH_Bonds - this function will not be called under the standard compilation

settings.

16.5 fix_special_bonds

Apply rules for fixing bonds as specified in Table 5 items 3 to 13.

35

InChI Source Code Documentation

16.6 TempFix_NH_NH_Bonds

Detect and mark -NH-NH- or -NH-NH3 (sic) bonds in BN_STRUCT.

16.7 BnsAdjustFlowBondsRad

1. Check for valency miscounting due to aromatic bonds.

2. Run RunBalancedNetworkSearch to set up BNS data.

3. Run SetBondsFromBnStructFlow to set the bonds that need changing as a result of running the

BNS algorithm.

4. Run RestoreBnStructFlow to reset BNS information.

16.8 RunBalancedNetworkSearch

This seems to be a multi-pass wrapper for BalancedNetworkSearch. Calls are made to the function

until its return value is non-negative. The code comment is ‘Run BNS until no aug pass is found’. The

return from the current function is nSumDelta, commented in the code as ‘number of eliminated pairs

of dots’. This suggests an iterative search for alternate paths.

16.9 SetBondsFromBnStructFlow

Uses the function SetAtomBondType to set bond types in connection table from bond types in the

BNS structure.

16.10 RestoreBnStructFlow

BNS utility function.

16.11 BnsTestAndMarkAltBonds

Loop over all bonds and use the BNS (balanced network search) method to determine alternating

chain or ring systems.

1. Set up for each bond by calling nMinFlow2Check, nMaxFlow2Check and nCurFlow2Check to

set up information required for testing sequence of bond types.

2. Call bNeedToTestTheFlow to decide if further processing is required.

3. Call bSetFlowToCheckOneBond to perform actions concerned with setting up for the BNS

algorithm.

4. Call RunBalancedNetworkSearch to perform the BNS algorithm.

5. Call bSetBondsAfterCheckOneBond to change marker on first bond.

6. Call SetBondsFromBnStructFlow to change the remaining bond markers as required by the

BNS results.

36

InChI Source Code Documentation

16.12 nMinFlow2Check

Checking flow for BNS algorithm.

16.13 nMaxFlow2Check

Checking flow for BNS algorithm.

16.14 nCurFlow2Check

Checking flow for BNS algorithm.

16.15 bNeedToTestTheFlow

Checking flow for BNS algorithm.

16.16 bSetFlowToCheckOneBond

Checking flow for BNS algorithm.

16.17 bSetBondsAfterCheckOneBond

Changes the bond type marks on one bond as determined by BNS.

16.18 SetBondsFromBnStructFlow

Change markers on bonds according to BNS.

16.19 RemoveNPProtonsAndAcidCharges

1. Use SimpleRemoveHplusNPO to do simple removal of protons from selected hetero atoms.

(Technical Manual Step 5.1)

2. Use HardRemoveHplusNP to remove protons from hetero atoms in more complicated

circumstances – cases where the hetero atom is part of a conjugated system. (Technical

Manual Step 5.1)

3. Use SimpleRemoveAcidicProtons to remove acidic protons in simple cases. (Technical Manual

Step 5.2) This step may need repeating presumably because early steps may reveal a new

structure that needs processing.

4. Use HardRemoveAcidicProtons to remove acidic protons in more complicated cases. (Technical

Manual Step 5.2)

5. Use SimpleAddAcidicProtons to add acidic protons in simple cases. (Technical Manual Step

5.3) This step may need repeating for the same reason as with Step 5.2.

6. Use HardAddAcidicProtons to add acidic protons in more complicated cases. (Technical Manual

Step 5.3)

37

InChI Source Code Documentation

16.20 SimpleRemoveHplusNPO

Uses GetAtomChargeType to determine if H needs to be removed from an atom then calls

AddOrRemoveExplOrImplH to do the actual removal.

16.21 GetAtomChargeType

Examine the chemistry of charged atoms taking into account the type of the atom and its

neighbourhood.

16.22 AddOrRemoveExplOrImplH

If the first parameter (nDelta) is positive, the function simply increments the implicit H count.

Otherwise it removes explicit H atoms and increments the atom H (and isotope) counts.

16.23 HardRemoveHplusNP

Remove of protons from tautomeric groups and deal with some cancelling charges.

16.24 SimpleRemoveAcidicProtons

Determine charge type of each atom and remove protons if necessary.

16.25 HardRemoveAcidicProtons

Removes protons and creates tautomeric groups.

16.26 SimpleAddAcidicProtons

Determine charge type of each atom and add protons if necessary.

16.27 HardAddAcidicProtons

Adds protons and creates tautomeric groups.

16.28 MarkChargeGroups

Delocalises charges using GetChargeType to get candidate charged atoms for marking.

16.29 MarkTautomerGroups

16.29.1 Handle 1-3 Tautomers

1. Count and list potential end points for tautomers.

38

InChI Source Code Documentation

2. Check in pBNS that the bonds are not protected (ALLOWED_EDGE) and that they are

not already tautomeric (bond type obtained from pBNS by ACTUAL_ORDER).

3. Check with FindAccessibleEndPoints that the end points listed above are suitable.

4. Call RegisterEndPoints to add new tautomeric groups or merge the new group with

existing tautomeric groups.

5. Call SetTautomericBonds to set bonds to tautomeric.

16.29.2 Handle 1,3 Keto-Enol Tautomerism

Similar to previous section with rules amended for keto-enol systems.

16.29.3 Handle 1,5 Tautomerism

Uses nGet15TautInAltPath to determine 1,5 tautomeric systems.

16.29.4 Handle 4-Pyridinol Ring Tautomerism

Calls nGet12TautIn5MembAltRing to confirm tautomerism.

16.29.5 Handle Pyrazole Tautomerism

Calls nGet12TautIn5MembAltRing to confirm tautomerism.

16.29.6 Handle Tropolones

Calls nGet14TautIn7MembAltRing or nGet14TautIn5MembAltRing to confirm tautomerism.

16.30 FindAccessibleEndPoints

Find pairs of atoms that are end points of alternate paths.

16.31 RegisterEndPoints

Create new tautomeric groups from end points or merge end points into existing tautomeric groups.

16.32 SetTautomericBonds

Change specific bond types (single or double) to tautomeric.

16.33 nGet12TautIn5MembAltRing

One of several functions to find and check ring tautomerism (nGet14TautIn7MembAltRing,

nGet14TautIn5MembAltRing, nGet12TautIn5MembAltRing, nGet15TautIn6MembAltRing).

39

InChI Source Code Documentation

Calls DFS_FindTautInARing to check tautomerism.

16.34 DFS_FindTautInARing

Calls one of several functions (specified by CheckDfsRing) to check the ring. Functions are

Check5MembTautRing, Check6MembTautRing, Check7MembTautRing.

16.35 Check5MembTautRing

Also Check6MembTautRing and Check7MembTautRing.

Code comment: check if a tautomeric 5-member ring (pyrazole derivatives) has been found.

16.36 GetChargeType

Tests atom iat for rules on charging. The atom must be a suitable hetero atom, charged and in a ring

that contains at least 5 atoms.

40

InChI Source Code Documentation

17 Stereochemistry Functions

17.1 set_stereo_parity

Calls set_stereo_atom_parity and set_stereo_bonds_parity to deduce parities for atoms and bonds

respectively.

17.2 set_atom_iso_sort_keys

For each atom use make_iso_sort_key to set up the isotopic sort key. For atoms that are not in

tautomeric groups this will include the atom isotope and isotopic H counts. For atoms in tautomeric

groups, only the atom isotope is set.

17.3 make_iso_sort_key

Sets up sort key with supplied information.

17.4 CountTautomerGroups

1. Loop through tautomeric groups to find maximum number. Count the number of end points for

each tautomeric group.

2. Mark tautomeric groups that do not need to be processed (no H atoms or inconsistent number

of end points).

3. Re-number the groups and end points.

17.5 inp2spATOM

Copy atom data from inp_at to at.

41

InChI Source Code Documentation

18 Canonicalisation Functions

18.1 GetBaseCanonRanking

Controlling function for canonicalisation. This function follows the flowchart given in Figure 30 of the

InChI Technical Manual.

1. Decide whether the structure is tautomeric and set appropriate flags.

2. Call CreateNeighList to set up lists of neighbours for non-tautomeric and tautomeric structures

as required. These lists will be used in differentiating atom ranks.

3. Call FillOutAtomInvariant2. This sets up the structure pAtomInvariant used in sorting the initial

ranks.

4. Call SetInitialRanks2 to set ranks from atom colours.

5. Call DifferentiateRanks2 to set ranks from neighbour lists.

6. Calls to CanonGraph<nn> functions to refine canonical ordering according to McKay’s

algorithm. The various CanonGraph<nn> functions are all wrappers for CanonGraph itself.

(Hydrogenless skeleton Ct_NoH)
7. Initial call to CanonGraph(01).

8. Call FixCanonEquivalenceInfo to determine bChanged.

9. Depending on bChanged, a call may be needed to CanonGraph(02). This will happen if atoms

that are not symmetrically related are given the same rank. For details see description of

FixCanonEquivalenceInfo. (Hydrogenless skeleton Ct_NoH)
10. Loop through atoms to see if there are any canonically equivalent atoms that have different

fixed H counts.

11. If there are, call SetInitialRanks2 and DifferentiateRanks2 to re-set the ranks including fixed H

counts.

12. CanonGraph(03) is then called with an input CT. The pointer to the input CT was left blank in

the earlier calls to CanonGraph. Note that on this call to CanonGraph the parameter digraph is

set to true whereas in the earlier calls it was set to false. The subsequent calls 4, 5, 6 and 8 also

set digraph to true. (Immobile H Ct_NoTautH)
13. If there are any specific isotopes set (including specific non-tautomeric H isomers), fill out key

information for the atoms in the CT and then call SetInitialRanks2 and DifferentiateRanks2 to re-

set the ranks to take this information into account.

14. CanonGraph(04) is then called to get a new set of rankings taking the isomer information into

account. (Isotopic atoms & H Ct_NoTautHIso)
15. Call FillOutAtomInvariant2 with the bTautGroupsOnly flag set.

16. Call SetInitialRanks2 to set ranks.

17. Call DifferentiateRanks4 to set ranks from neighbour lists.

42

InChI Source Code Documentation

18. Set up extra auxiliary invariant information and call the last two functions again with atom

auxiliary information set.

19. CanonGraph(05) is then called to get a new set of rankings taking the tautomer information into

account. (Mobile H groups Ct_Base)
20. The next section deals with tautomeric groups that contain isotopes (either H or heavy atom).

21. First count the number of mobile isotopic H atoms and the number of non-mobile isotopic

atoms.

22. Then call SetInitialRanks2 and DifferentiateRanks2 to re-set the ranks including mobile isotopic

H counts.

23. Call CanonGraph(06) to rank the atoms with the mobile isotope information included. (Isotopic:

atoms, immobile H, mobile H groups, atoms that may have exchangeable H Ct_BaseIso)
24. Further calls to CanonGraph (07 (∆(fixed H) Ct_FixH) and 08 (Isotopic: atoms and H Ct_FixHIso))

are in the code, but these can only be called by specifying the compilation option

ENABLE_ENGINEERING_OPTIONS and including the command line parameter FIXEDH.

These are presumably test modes and not for general use.

18.2 CreateNeighList

Create a neighbour list (a graph) from the lists of connections to each atom. The graph contains a list

of pointers to lists of connections for each atom.

18.3 FillOutAtomInvariant2

Sets up information used for initial sorting of atom ranks.

The switch bTautGroupsOnly determines whether to set up complete information or just for tautomeric

groups.

1. Count number of C atoms, explicit H (including D and T), and atoms of other types. Also set up

an array of the symbols of the other types.

2. Sort the symbol array using the comparison function CompChemElemLex and if there are C

atoms present, add ‘C’ at the start of the element list. If there are H atoms present add ‘H’ at the

end of the list.

3. Set up the atom invariant for each atom.

4. The first entry in the val array is the order of the atom type in the Hill formula.

5. The next entry is the number of connections to the atom.

6. Optionally followed by indicators of hydrogen counts.

7. Optionally followed by indicators of tautomerism.

8. The iso_sort_key is then set up for the atom.

9. Set up tautomeric group information.

43

InChI Source Code Documentation

18.4 CompChemElemLex

Compares first 2 characters of string.

18.5 SetInitialRanks2

1. Initialise atom numbers.

2. Sort atom numbers using the comparison function CompAtomInvariants2. The structure pointed

to by pAtomInvariant2 is used for sorting.

3. Loop backward through atoms to assign ranks. All the atoms in a cell are given the rank of the

greatest atom index in that cell. The function CompAtomInvariants2Only is used to decide if

atoms are equivalent.

18.6 CompAtomInvariants2

Use CompAtomInvariants2Only to decide on precedence. In the event of a tie, the pointers

themselves are used to decide precedence.

18.7 CompAtomInvariants2Only

Compares atoms a1 and a2 according to information in the structure pointed to by the global variable

pAtomInvariant2ForSort. This global will have been set up by the calling function prior to starting the

comparison.

The order in which the comparison is done is as follows.

1. Loop through the val array of pAtomInvariant2ForSort for the first AT_INV_BREAK1 (the

number of atom invariant values that have to be compared) members until a difference is found.

Precedence is given to the atom with the greatest val.

2. Precedence is given to the atom with the greater iso_sort_key.

3. Loop through the remaining members of the val array up to the AT_INV_LENGTH (the number

of atom invariant values that need to be compared if using the iso sort key) member until a

difference is found. Precedence is given to the atom with the greater iso_aux_key.

Note: the comparison code in this loop seems strange because it only returns if there is no

difference in the values; this is in contrast to the logic of the previous loop which returns when

there is a difference.

18.8 DifferentiateRanks2

1. Set up the global pointer pn_RankForSort as pnCurrRank for sort comparisons.

44

InChI Source Code Documentation

2. Use either tsort (which is defined as insertions_sort) with comparison function CompRank or

qsort with comparison function CompRanksOrd to sort the atom list. The sort used depends on

the value of bUseAltSort.

3. Iterate through the functions SortNeighLists2 and SetNewRanksFromNeighLists (using

comparison function CompNeighListRanksOrd) until the ranking orders do not change. We then

have the best ranking in pnCurrRank.

18.9 DifferentiateRanks4

Similar to DifferentiateRanks2, but with different sorting functions. The sorting function correspond to

different levels of call to the McKay canonicalisation algorithm.

18.10 insertions_sort

Looks like a bubble sort. Presumably this sort is preferred to the C qsort because the lists to be sorted

are either very short or in close to the correct order to start with.

18.11 CompRank

Compares ranks for sorting.

18.12 CompRanksOrd

Compares ranks for sorting and uses pointers in the event of a tie.

18.13 SortNeighLists2

Loops through all atoms to sort the neighbour lists using insertions_sort_NeighList_AT_NUMBERS for

atoms that have duplicate rank with another atom.

18.14 insertions_sort_NeighList_AT_NUMBERS

Sorts the neighbour list supplied in base. The first entry in the base array is the number of

connections. Uses a bubble sort because the list of connections is very short.

18.15 SetNewRanksFromNeighLists

Sorts an atom number list using either tsort or qsort (as in DifferentiateRanks2) with comparison

function as supplied by the calling function (comment indicates that the function used is always

CompNeighListRanksOrd).

45

InChI Source Code Documentation

18.16 CompNeighListRanksOrd

Comparison function that returns result of CompNeighListRanks. If this results in a tie, the return is

based on the value of the pointers.

18.17 CanonGraph

This function is the fundamental implementation of the canonicalisation algorithm. According to the

code comment “A naive implementation of graph canonical numbering algorithm from "Practical Graph

Isomorphism" by Brendan D. McKay, Congressus Numerantium, Vol. 30 (1981), pp. 45 - 87. Note:

Several typos fixed, added chem. struct. Specifics”.

The main result of this function is to deposit the best partition in rho and use it in exit_function to

renumber the structure in canonical order.

The variable lab is always true in this implementation; the code would be slightly simpler if tests on lab

were to be removed along with code that is only executed if lab is false. The variable has been

retained for consistency with McKay’s published algorithm (Tchekhovskoi, 2011). The reason that lab

is always set is that we want to find the best value for rho and that may be better than zeta. If we only

find zeta we might end up with different values depending on the original number scheme. This would

still give useful information about symmetry.

The code contains several debug sections with the statement ‘int stop = 1’, presumably to provide a

convenient breakpoint. These could be removed from the release version and would result in some

code simplification.

There is a consistent ‘off by one’ problem in the code with the index k. This is presumably because the

original algorithm is based on arrays starting with one (as in Fortran) instead of zero (as in C). The

code could be made slightly simpler and easier to follow by refactoring to the native C style.

18.17.1 Initialisation Section

1. Assign memory to and initialise structures.

2. Use UnorderedPartitionMakeDiscrete to initialise theta. theta records which atoms are

equivalent by symmetry. This function makes them all different to start with.

3. Call PartitionIsDiscrete to determine if pi is already discrete. The structure pi is at this

stage the partition handed to CanonGraph by the calling function. If the partition is

already discrete, no more processing is required here. Examples: methane, methyl

chloride.

46

InChI Source Code Documentation

4. Call PartitionSatisfiesLemma_2_25 (McKay’s lemma 2.25). Note that Lemma 2.25 is only

used if dig is false and that this is the only the case for the ‘01’, ‘02’ and ‘07’ calls to

CanonGraph. McKay says that the Lemma does not hold for graphs with loops.

Tchekhovskoi (2011) states

“As to the dig variable (digraph, or directed graphs), it should be 1 in case of

directed graphs. The presence of the directed graph is determined by the

structure of layer(s) optimized, not by the molecular graph. In practice,

digraph means that when calculating an equitable partition, for an edge

A->B the color of A affects the color of B, but not vice versa. […] This

approach is needed to keep the previously optimized layer unchanged while

optimizing the next layer.”

Presumably the lemma can be used for layers ‘01’, ‘02’ and ‘07’ because they are not

based on earlier information, although it is not clear that this applies to ‘07’, or to ‘02’

either. It is also not clear if removing the Lemma altogether would cause serious

inefficiency in canonicalisation. According to Tchekhovskoi's comment above, loops are

concerned with the need to maintain a pre-determined order (from an earlier layer) and

not with whether or not the chemical structure contains rings. This notation is somewhat

confusing for chemists.

5. Call CtPartClear to do some initialisation, but this may be unnecessary.

18.17.2 Preliminary Section to Get Initial Partition

6. Start of preliminary section to get what the code comment calls ‘the first leaf’. This obtains

an initial Minimal Class Representative (mcr) ordering and stores it in rho as the best

partition found to date. Subsequent orderings can then be compared to rho, and if better,

stored as the new best partition.

7. Get the first multiple atom (vertex) cell from pi using PartitionGetFirstCell (information

returned in W).

8. Use CellGetMinNode to get the first node (atom) in the cell found by (7).

9. Check with PartitionSatisfiesLemma_2_25 again.

10. Call PartitionColorVertex to reduce the rank of the selected atom and re-partition the

current level of pi.

11. Use CtPartFill to fill in Lambda using the atom numbers stored in pi for the current

partition.

12. Check Lambda against the fixed rho using CtPartCompare. Note that the fixed rho does

not exist on the first passes through CanonGraph (the pointer to fixed rho is NULL for

these passes).

13. Use CtPartCopy to copy Lambda to pzb_rho (the best CT found so far) and zf_zeta (the

first complete CT found).

47

InChI Source Code Documentation

14. Use PartitionIsDiscrete to check if the current level of pi is discrete. If it is we have the

first possible value for rho and can leave the first leaf node, otherwise we carry on re-

partitioning pi until it is discrete.

15. End of loop to find starting partition.

18.17.3 Set Up For Testing Further Partititions

16. Call CtPartInfinity to initialise zf_zeta CT.

17. Use PartitionCopy to copy latest partition (i.e. discrete pi) into zeta.

18. If there is a fixed rho call CtFullCompare to set up qzb_rho_fix, re-set rho from pi and use

CtCompareLayersGetFirstDiff to re-set some variables; otherwise just copy the latest

level of pi into rho with Partition copy and use CtPartInfinity to initialise pzb_rho CT.

19. Use CellMakeEmpty to initialise the cell at level k of W and then drop back by one level

20. We then enter a long section of code which is controlled by ‘goto’s and labels. After the

previous step there is an unconditional jump to L13. The code at L13 gets an alternative

node at the current level (which was decremented in the previous step) and then

proceeds to test the resultant partition against the current rho.

18.17.4 Loop to Find Best Value of Partition rho

21. Section following label L2.

22. Use PartitionColorVertex to update partition pi with the rank of the test atom v[k-1]

reduced.

23. Again update Lambda using CtPartFill.

24. Use CellMakeEmpty to initialise the cell at level k of W.

25. Use CtPartCompare to compare Lambda and zf_zeta to see if hz_zeta should be set to k.

This means that the current CT (Lambda) is as good as the first discovered CT (zf_zeta).

26. Similar comparison on Lambda and pzb_rho_fix to make sure that Lambda is as good as

the fixed CT handed down from the previous layer.

27. Code concerned with testing for the best value of rho.

28. There are 3 possibilities at the end of the L2 block. (1) If the current partition is discrete

we go directly to the L7 block. (2) This may be a new isomorphism and we re-partition at

the current level and loop back to L2. (3) Nothing was found so we drop through to L6

and go back to an earlier level.

18.17.5 Backtrack

29. Section following L6.

30. Decide which level to return to.

48

InChI Source Code Documentation

31. May go directly to L13 or use PartitionGetMcrAndFixSet to get node equivalencies into

omega and phi before going to L12. However it is not clear from the test examples used

in compiling this document under what circumstances the jump to L12 is performed.

18.17.6 Found a Better rho or an Isomorphism

32. Section following L7.

33. Tests on h_zeta and hz_zeta.

34. The use of labels here is somewhat confusing as the result of the code not being

structured according to normal C language standards.

35. If Lambda and zf_zeta compare exactly using CtFullCompare we have an isomorphism

and use PartitionGetTransposition to make gamma (which reflects the symmetry implied

by the isomorphism) and then jump to L10. Gamma will be used to determine equivalent

nodes in L10.

18.17.7 Deal with Potentially Better Value for rho

36. Section following label L8.

37. This code is reached when a potentially better rho has been reached.

38. Tests for better partitioning (qzb_rho > 1) and that the new partitioning is consistent with

the fixed partitioning from the previous layer.

18.17.8 Found a Better rho

39. Section following label L9.

40. Copy the latest partition into rho.

41. Copy the latest CT into pzb_rho.

42. Return to L6 to start backtracking.

18.17.9 Deal With Isomorphism

43. Section following label L10.

44. Call TranspositionGetMcrAndFixSetAndUnorderedPartition to get node equivalencies into

theta_from_gamma using gamma, omega and phi.

45. Call UnorderedPartitionJoin to merge theta_from_gamma into theta. If there is no change

in theta, skip to L11 which effectively looks for a new test node.

46. Test with GetUnorderedPartitionMcrNode to see if we can skip over L11 and L12.

47. If we are skipping, set level back to h_zeta. (Comment - this code could be better

structured in C.)

49

InChI Source Code Documentation

18.17.10 Backtrack After Isomorphism

48. Section following label L11.

49. Set level to h_rho or h_zeta depending on whether lab is true. Since lab is always true

this means that we are looking for the best value of rho.

18.17.11 Prepare to Start from Backtrack

50. Section following label L12.

51. May call CellIntersectWithSet, depending on value of e at current level (e is set in section

following label L17 but it is not known how that section can be reached – see section

18.17.16 below for L17).

18.17.12 Get Next Node for Testing

52. Section following label L13.

53. Check if we should quit for either user request or time out.

54. Check if the level is 0 and if it is, all possibilities have been examined and we can

proceed to the normal exit.

55. Set h_rho and h_zeta. Both variables both seem to correspond to McKay's 'h', and a

comment in the code at this point hints that they were introduced to solve some problem

that showed up when the algorithm was put into use.

56. Use CellGetMinNode to get next node (atom) to try as the earliest cell in the next trial

partition. Then drop through to L14 for testing.

18.17.13 Test Potential New Partition

57. Section following label L14.

58. Use calls to GetUnorderedPartitionMcrNode to detect if the current node (v[k-1]) and the

next test node (tvh) are symmetrically equivalent in theta, and if they are increment the

counter (index) through the number of nodes in the current cell.

59. Use CellGetMinNode to get the next test node at the current level (v[k-1]).

60. If the nodes that need testing at this level have been exhausted (node = infinity), go to

L16 to decrement the level.

61. Test with GetUnorderedPartitionMcrNode to see if a symmetry equivalent atom has

already been tested, and if it has loop back to L14 to test another atom.

18.17.14 Found a Potential New Partitioning

62. Section following label L15.

63. Update t_Lemma and hz_zeta.

64. Update qzb_rho and hz_rho.

50

InChI Source Code Documentation

65. Call UpdateCompareLayers to re-initialise kLeast_rho.

66. Update qzb_rho_fix and hz_rho_fix.

67. Call UpdateCompareLayers to re-initialise kLeast_rho_fix.

68. Unconditionally jump back to L2 to re-partition pi according to new test node.

18.17.15 Backtrack

69. Section following label L16.

70. This point is reached if a new partition was not found in the L14 section.

71. Store information and backtrack by decrementing k.

72. Return to L13 for testing for other partitionings.

18.17.16 Code with Unknown Purpose

73. Section following label L17.

74. This code has not been reached by any of our testing examples. It looks like something

designed to reduce the number of permutations that need to be examined.

75. Test on e flag for the current level. If it is not set, call NodeSetFromVertices for this level

and then do more checking.

76. Set flag in e for current level.

77. Use CellGetMinNode to set next node and go to L13 for testing.

18.17.17 Prepare Information for Function Return After Successful Computation of rho

78. Section following exit_function.

79. Test for error on bRhoIsDiscrete flag. This is a check that a partition has actually been

found.

80. Use CtFullCompare to check pzb_rho_fix against pzb_rho.

81. Fill out nSymmRank with equivalences derived from theta. The symmetry ranks are used

in the calling function to determine whether the graph has been partitioned so that atoms

which are symmetrically different are not canonically equivalent.

82. Copy information from rho into rank and order arrays for return. Also copy the CT into the

return structure.

18.17.18 Tidy Up Before Function Return

83. Section following exit_error frees memory allocated earlier in the function. This section is

used after an error, but also drops through from the exit_function section.

18.17.19 UnorderedPartitionMakeDiscrete

Assign each atom to its own partition.

51

InChI Source Code Documentation

18.18 PartitionIsDiscrete

Decide if every atom in the input partition has its own rank.

18.19 PartitionSatisfiesLemma_2_25

McKay’s lemma 2.25. Counts partition size (i.e. number of partitions) and number of non-trivial

partitions (i.e. partitions with more than one atom), and then does the specified lemma test.

18.20 PartitionGetFirstCell

Gets the next cell to be partitioned.

18.21 CellGetMinNode

Gets the node within a cell that is to be used for the next partitioning and returns it as the value of the

function.

18.22 PartitionColorVertex

Re-colours the node (vertex) given in the parameter list and then re-partitions the graph given the new

colouring. First the rank of the nominated vertex is reduced and then either DifferentiateRanks4 or

DifferentiateRanks3 is used to assign ranks to the remaining vertices. The choice of function depends

on the value of the digraph parameter.

18.23 CtPartFill

Fills in the part of the connection table that is known from the current partition ranks. This will depend

on the distinct ranks within the current partition. The CT is only filled in as far as the ranks are distinct

within the partition. For instance if the ranks are 1 2 4 4 5 6, only the first 2 atoms are distinct. The next

part of the algorithm will have to assign separate ranks to the 2 atoms with rank 4 before the

remainder of the CT can be filled in. The CT is re-numbered according to the ranks specified in the

partition.

18.24 CtPartCopy

Copies part of an internal CT structure to another internal CT structure.

18.25 CtPartInfinity

Initialises connection table structure.

52

InChI Source Code Documentation

18.26 PartitionCopy

Copies partition and adds mask bit to the copied partition.

18.27 CellMakeEmpty

Initialise the cell information for level k of baseW.

18.28 GetUnorderedPartitionMcrNode

Returns the equivalence of node v in the UnorderedPartition – effectively the equivalence (symmetry)

value of the atom as currently known.

18.29 UpdateCompareLayers

Re-initialises kLeast entries above specified level (hzz).

18.30 CtPartCompare

There are very many comments in the code of this function. The purpose of the function is to decide if

the CTs represented by the partitions are different and, if so, which is the ‘better’. The result will be

used to decide whether to continue with the current partition in the CanonGraph function. The exact

nature of the comparison depends on the Digraph variable. This is because in some layers of the

canonicalisation a fixed CT from a previous layer will already be available.

18.31 PartitionGetMcrAndFixSet

Sets up the bitmaps supplied as parameters to the function using the supplied partition.

18.32 PartitionGetTransposition

Makes gamma the transposition of pFrom to pTo.

18.33 TranspositionGetMcrAndFixSetAndUnorderedPartition

Sets up the bitmaps and the unordered transposition array supplied as parameters using the supplied

transposition array. The unordered transposition array gives the equivalent atoms in the structure

deduced from the current partition.

18.34 UnorderedPartitionJoin

Joins two partitions (parameters p1 and p2) so that p2 contains the total atom equivalences deduced

so far by the algorithm.

53

InChI Source Code Documentation

18.35 GetUnorderedPartitionMcrNode

Calls nGetMcr2 to get the equivalence class for the supplied atom. This function is used in determining

if two atoms are symmetrically related.

18.36 nGetMcr2

Works through the equivalence array and returns the number of the atom equivalence set to which the

supplied atom belongs.

18.37 FixCanonEquivalenceInfo

The comment in the code gives an example of a pathological structure which leads to non-equivalent

atoms having the same rank after the first pass through CanonGraph.

In the example all the 2-connected atoms have the same rank, but are not equivalent. The function

rebuilds the current rank array to differentiate between the non-symmetrically equivalent atoms.

1. Use qsort on the atom number array with the comparison function CompRanksOrd. Note that

the ranks for sorting are stored in the global pointer pn_RankForSort (set to the nSymmRank

array).

2. Call SortedEquInfoToRanks to put the new ranking order into nTempRank.

3. Compare the new and old ranking orders, and if they are different copy the new into the old.

4. Call SortedRanksToEquInfo to set up the nSymmRank array with the atoms grouped according

to symmetry.

5. Set value of bChanged for return.

18.38 CompRanksOrd

Comparison function for ranks array. Differentiates on rank, and if the ranks are equal on the pointers

themselves.

18.39 SortedEquInfoToRanks

Puts new ranks into nSymmRank by looping backwards through nAtomNumber and for each atom in

each symmetrically equivalent group assigning the highest atom number in the group as its rank.

Assumption: the atoms are sorted by their initial ranking number in ascending order (See

CompRanksOrd).

54

InChI Source Code Documentation

19 InChI Output Functions

19.1 FillOutINChI

Controls the output to the InChI string. The output is sent to member strings of the inchi_Output

structure as follows:

szInChI – the InChI identifier itself

szAuxInfo – auxiliary InChI information

szMessage – messages from the code

szLog – InChI log information

19.2 SetConnectedComponentNumber

Sets the component number for atoms in at array.

19.3 SortAndPrintINChI

1. Sort component InChIs. Uses qsort to do two sorts, firstly with CompINChINonTaut2 as the

comparison function, secondly with CompINChITaut2. It is not obvious why there is a loop to do

two qsorts (TAUT_NUM, TAUT_NON and TAUT_YES are defined in mode.h) because it looks

as if the second sort (TAUT_YES) will always overwrite the first sort (TAUT_NON).

2. There are then two options, and the one chosen depends on the print options set up in

INPUT_PARMS.

3. The second option results in one or more calls to OutputINChI2.

19.4 CompINChINonTaut2

1. Returns comparison of fragments by CompINChI2 in non-tautomeric mode.

2. If this fails to differentiate the fragments and the flag CANON_FIXH_TRANS is set (which

appears to always be the case), CompINChI2 in tautomeric mode is used.

3. If the fragments are still not differentiated, the original fragment order numbers are used.

19.5 CompINChITaut2

This is similar to CompINChINonTaut2, with the modes reversed.

1. Returns comparison of fragments by CompINChI2 in tautomeric mode.

2. If this fails to differentiate the fragments and the flag CANON_FIXH_TRANS is set (which

appears to always be the case), CompINChI2 in non-tautomeric mode is used.

3. If the fragments are still not differentiated, the original fragment order numbers are used.

55

InChI Source Code Documentation

19.6 CompINChI2

Comparison function for fragments. Comparison works in the following order.

1. Non-empty fragment takes precedence over empty fragment.

2. Two empty fragments cannot be distinguished.

3. Non-deleted fragment takes precedence over empty fragments.

4. Next use CompareHillFormulasNoH to differentiate on Hill formula.

5. Fragment with greater number of non-terminal H atoms takes precedence.

6. Fragment with greater atomic number in sorted atom list takes precedence. Code comment

states this will be the same if the Hill formulae are the same.

7. Longer CT takes precedence.

8. Greater CT array takes precedence.

9. Greater total H count takes precedence.

10. Greater individual atom non-tautomeric H count takes precedence, with the exception that

atoms with zero count take precedence over atoms with non-zero count.

11. Next use CompareTautNonIsoPartOfINChI to differentiate on non-isotopic tautomeric parts.

12. Next test on ‘non-tautomeric "fixed H" specific’.

13. Next use CompareInchiStereo to differentiate on non-isotopic stereo.

14. Fragment with greater number of isotopic atoms takes precedence.

15. Compare individual isotopic atoms in isotopic atom list. Greater atom number takes precedence,

and if the atom numbers are the same, the greater isotopic difference takes precedence.

16. Compare individual isotopic H. For each atom greater T count takes precedence, followed by D

count, followed by H (proton) count.

17. Fragment with greater number of isotopic groups takes precedence.

18. Next use CompareInchiStereo to differentiate on isotopic stereo.

19. If both fragments are charged, the lesser total charge takes precedence.

20. If only one fragment is charged, the uncharged takes precedence.

Note: the penultimate line in the function (commented ‘stable sort’) has been commented out.

Presumably the calling function is expected to deal with a tie at this point.

19.7 CompareHillFormulasNoH

Compare Hill formula excluding H atoms. Considers both element types and the number of each

element in the formula.

19.8 CompareTautNonIsoPartOfINChI

Compares tautomeric part of InChI.

56

InChI Source Code Documentation

19.9 CompareInchiStereo

Compares stereo part of InChI. Bonds are compared first then atoms.

19.10 OutputINChI2

Sets options for InChI output and calls OutputINChI1.

19.11 OutputINChI1

Outputs information to various files.

Output_file is used for returning the InChI string itself to the external calling function.

Text is added to the output file using the function inchi_ios_print for the InChI Identifier (as described

in the Technical Manual – Figure 2) and the Auxiliary Information (as described in the Technical

Manual – Figure 2a).

19.12 inchi_ios_print

Outputs string information to string buffer or to file or the standard output channel according to

settings.

57

InChI Source Code Documentation

20 Key Generation Functions

20.1 GetStdINCHIKeyFromStdINCHI

Wrapper function for GetINCHIKeyFromINCHI to obtain standard InChI Key.

20.2 GetINCHIKeyFromINCHI

Main calling function to obtain InChI key from InChI.

1. Checks for valid InChI string.

2. Allocates memory for output strings.

3. Get major and minor strings from InChI for hashing.

4. Protonation treated as a special case and a flag is added to the end of the key after the minor

part, the standard/non standard flag, a version flag and a separating hyphen.

5. The code uses the SHA-256 standard (published by NIST in 2002) to hash the major and minor

strings (Devine, 2006). According to the code comments this is freely distributed software

(sha2.c and sha2.h). No further details on the algorithms used are given here.

20.3 AddMOLfileError

Adds the specified error message to the error string. Most errors are generated by functions that read

and pre-process connection tables.

Most of the error messages are hard-coded in English within the system. A few are generated where it

is helpful to give more specific information about a problem.

20.4 GetCanonLengths

Utility to count lengths of various arrays and put the result into the structure s.

58

InChI Source Code Documentation

21 Files and Functionality

File Lines Functions Contents

aux2atom.h 2770 13 General memory assignment

ichican2.c 5146 78 Canonicalisation

ichicano.c 2208 16 Canonicalisation utilities

ichicans.c 1640 27 Stereo

ichiisot.c 110 3 Sort keys

ichimak2.c 1203 12 Hill formula and stereo

ichimake.c 4725 34 Comparisons and utilities

ichimap1.c 865 30 Comparisons and tree stuff

ichimap2.c 2885 30 Sorting and ranking for canonicalisation

ichimap4.c 1647 2 Stereo

ichinorm.c 3324 43 Chemical structure

ichiparm.h 2613 7 Command line parsing

ichiprt1.c 4148 22 Printing

ichiprt2.c 1591 26 Strings for printing

ichiprt3.c 3200 26 More strings

ichiqueu.c 1412 16 Checking tautomeric structure

ichiread.c 8114 54 InChI input/output

ichiring.c 336 11 Rings and queues

ichirvr1.c 4929 54 Tautomers and structure manipulation

ichirvr2.c 6354 30 Tautomers and structure manipulation

ichirvr3.c 5508 3 Tautomers and structure manipulation

ichirvr4.c 3196 22 Tautomers and structure manipulation

ichirvr5.c 1175 3 Tautomers and structure manipulation

ichirvr6.c 1296 1 Tautomers and structure manipulation

ichirvr7.c 2330 21 Comparison and display

ichisort.c 550 27 Sort and comparison

ichister.c 3848 44 Stereo

ichitaut.c 4412 36 Tautomerism

ichi_bns.c 9603 104 BNS and tautomerism

ichi_io.c 1030 21 IO utilities

ikey_base26.c 1344 9 Hashing

ikey_dll.c 552 8 Key DLL

lreadmol.h 1266 17 MOL file reading

59

InChI Source Code Documentation

runichi.c 3986 31 High level controls

sha2.c 419 8 Hashing utilities/testing

strutil.c 4595 39 Structure utilities

util.c 1124 39 Structure utilities

22 Glossary of Terms Used in InChI Software

mcr – minimal class representative

BNS – Balanced Network Search

DFS – Depth First Search

BFS – Breadth First Search

60

InChI Source Code Documentation

23 References

Apodaca, R. (2006), “InChI Canonicalization Algorithm”,
http://depth-first.com/articles/2006/08/12/inchi-canonicalization-algorithm/

Augeri, C. J. (2008), “On Graph Isomorphism and the Pagerank Algorithm”, Dissertation, Air Force Institute
of Technology. http://www.sagemath.org/files/thesis/augeri-thesis-2008.pdf

Devine, C. (2006). “FIPS-180-2 compliant SHA-256 implementation”,
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

Digital Chemistry (2010a), “Test Suites for the InChI Software”, Report prepared for the “InChI Trust InChI
Software Assessment Contract”, revised version 8 March 2010.

Digital Chemistry (2010b), “Rewriting the InChI Software in C++ and/or Java”, Report prepared for the “InChI
Trust InChI Software Assessment Contract”, 8 March 2010.

Fowler, M (1999), “Refactoring: Improving the Design of Existing Code”, Addison Wesley.

IUPAC (2010), “IUPAC International Chemical Identifier (InChI) InChI version 1, software version 1.03 (2010)
API Reference”, 15 June 2010. http://www.iupac.org/inchi/download/version1.03/INCHI-1-DOC.zip

Kocay, W. & Stone, D. (1993), "Balanced Network Flows", Bulletin of the Institute of Combinatorics and its
Applications, 7, 17-32.

Kocay, W. & Stone, D’ (1995), "An Algorithm for Balanced Flows", Journal of Combinatorial Mathematics
and Combinatorial Computing, 19, 3-31.

McKay, B. D. (1981), “Practical graph isomorphism”, Congressus Numerantium, 30, 45-87.
http://cs.anu.edu.au/~bdm/nauty/pgi.pdf

Stein, S. E., Heller, S. R., Tchekhovskoi, D. V. and Pletnev, I. V. (2010), “IUPAC International Chemical
Identifier (InChI) InChI version 1, software version 1.03 (2010) Technical Manual”, 25 June 2010.
http://www.iupac.org/inchi/download/version1.03/INCHI-1-DOC.zip

Symyx (2010), “CTfile Formats”, http://www.symyx.com/downloads/public/ctfile/ctfile.pdf

Tchekhovskoi, D. V. (2011), e-mails to Digital Chemistry, 14, 23 and 24 Feb 2011.

61

http://depth-first.com/articles/2006/08/12/inchi-canonicalization-algorithm/
http://www.symyx.com/downloads/public/ctfile/ctfile.pdf
http://www.iupac.org/inchi/download/version1.03/INCHI-1-DOC.zip
http://cs.anu.edu.au/~bdm/nauty/pgi.pdf
http://www.iupac.org/inchi/download/version1.03/INCHI-1-DOC.zip
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.sagemath.org/files/thesis/augeri-thesis-2008.pdf

	1 Introduction
	1.1 Organization of Source Code Files
	1.2 Organization of this Document
	1.3 Conventions Used

	2 Overall Control
	3 Compilation Options
	4 Command Line Parameters
	5 API Functions
	6 Reading MOL Files
	7 Production of InChI
	8 Normalising Structures
	8.1 Changes to the Structure Drawing (Technical Manual – Step 1)
	8.2 Disconnection of Salts (Technical Manual – Step 2)
	8.3 Disconnection of Metals (Technical Manual – Step 3)
	8.4 Elimination of Radicals (Technical Manual – Step 4)
	8.5 Removal of Protons from Charged Heteroatoms (Technical Manual – Step 5.1)
	8.6 Removal of Protons from Neutral Heteroatoms (Technical Manual – Step 5.2)
	8.7 Addition of Protons to Reduce Negative Charge (Technical Manual – Step 5.3)
	8.8 Detection of Tautomerism (Technical Manual – Step 6.1)
	8.9 Detection of Movable Positive Charges (Technical Manual – Step 6.2)
	8.10 Additional Normalisation (Technical Manual – Step 6.3)

	9 Handling Isotopic H and Heavy Atom Isotopes
	10 Handling Stereochemistry
	11 Canonicalisation of Structures
	11.1 Connection Tables in Canonicalisation (Level 1)
	11.2 Symmetry in Canonicalisation
	11.3 ‘Pathological’ Structures (Level 2)
	11.4 Fixed H Layer (Level 3)
	11.5 Isotope Layer (Level 4)
	11.6 Normalisation (Mobile H) Layer (Level 5)
	11.7 Mobile H with Isotopes Layer (Level 6)
	11.8 Fixed H Layers (Levels 7 and 8)

	12 Hashing Algorithms and Key Generation
	13 Overall Control Functions
	13.1 GetStdINCHI and GetINCHI
	13.2 GetINCHI1
	13.3 ExtractOneStructure

	14 Basic Connection Table Functions
	14.1 SetAtomProperties
	14.2 SetBondProperties
	14.3 SetAtomAndBondProperties
	14.4 SetNumImplicitH
	14.5 get_num_H
	14.6 Extract0DParities
	14.7 ProcessOneStructure
	14.8 CreateOneStructureINChI
	14.9 PreprocessOneStructure
	14.10 DuplicateOrigAtom
	14.11 CreateOneComponentINChI
	14.12 Create_INChI

	15 Structure Standardisation Functions
	15.1 fix_odd_things
	15.2 DisconnectSalts
	15.3 bIsMetalToDisconnect
	15.4 bIsAmmoniumSalt
	15.5 DisconnectAmmoniumSalt
	15.6 bIsMetalSalt
	15.7 DisconnectMetalSalt
	15.8 bMayDisconnectMetals
	15.9 MarkDisconnectedComponents
	15.10 bNumHeterAtomHasIsotopicH
	15.11 bCheckUnusualValences
	15.12 detect_unusual_el_valence
	15.13 DisconnectMetals
	15.14 DisconnectOneLigand
	15.15 DisconnectInpAtBond
	15.16 RemoveInpAtBond
	15.17 ReconcileAllCmlBondParities
	15.18 remove_terminal_HDT
	15.19 MarkRingSystemsInp

	16 Tautomerism Functions
	16.1 mark_alt_bonds_and_taut_groups
	16.2 AllocateAndInitBnStruct
	16.3 AllocateAndInitBnData
	16.4 SetForbiddenEdges
	16.5 fix_special_bonds
	16.6 TempFix_NH_NH_Bonds
	16.7 BnsAdjustFlowBondsRad
	16.8 RunBalancedNetworkSearch
	16.9 SetBondsFromBnStructFlow
	16.10 RestoreBnStructFlow
	16.11 BnsTestAndMarkAltBonds
	16.12 nMinFlow2Check
	16.13 nMaxFlow2Check
	16.14 nCurFlow2Check
	16.15 bNeedToTestTheFlow
	16.16 bSetFlowToCheckOneBond
	16.17 bSetBondsAfterCheckOneBond
	16.18 SetBondsFromBnStructFlow
	16.19 RemoveNPProtonsAndAcidCharges
	16.20 SimpleRemoveHplusNPO
	16.21 GetAtomChargeType
	16.22 AddOrRemoveExplOrImplH
	16.23 HardRemoveHplusNP
	16.24 SimpleRemoveAcidicProtons
	16.25 HardRemoveAcidicProtons
	16.26 SimpleAddAcidicProtons
	16.27 HardAddAcidicProtons
	16.28 MarkChargeGroups
	16.29 MarkTautomerGroups
	16.29.1 Handle 1-3 Tautomers
	16.29.2 Handle 1,3 Keto-Enol Tautomerism
	16.29.3 Handle 1,5 Tautomerism
	16.29.4 Handle 4-Pyridinol Ring Tautomerism
	16.29.5 Handle Pyrazole Tautomerism
	16.29.6 Handle Tropolones

	16.30 FindAccessibleEndPoints
	16.31 RegisterEndPoints
	16.32 SetTautomericBonds
	16.33 nGet12TautIn5MembAltRing
	16.34 DFS_FindTautInARing
	16.35 Check5MembTautRing
	16.36 GetChargeType

	17 Stereochemistry Functions
	17.1 set_stereo_parity
	17.2 set_atom_iso_sort_keys
	17.3 make_iso_sort_key
	17.4 CountTautomerGroups
	17.5 inp2spATOM

	18 Canonicalisation Functions
	18.1 GetBaseCanonRanking
	18.2 CreateNeighList
	18.3 FillOutAtomInvariant2
	18.4 CompChemElemLex
	18.5 SetInitialRanks2
	18.6 CompAtomInvariants2
	18.7 CompAtomInvariants2Only
	18.8 DifferentiateRanks2
	18.9 DifferentiateRanks4
	18.10 insertions_sort
	18.11 CompRank
	18.12 CompRanksOrd
	18.13 SortNeighLists2
	18.14 insertions_sort_NeighList_AT_NUMBERS
	18.15 SetNewRanksFromNeighLists
	18.16 CompNeighListRanksOrd
	18.17 CanonGraph
	18.17.1 Initialisation Section
	18.17.2 Preliminary Section to Get Initial Partition
	18.17.3 Set Up For Testing Further Partititions
	18.17.4 Loop to Find Best Value of Partition rho
	18.17.5 Backtrack
	18.17.6 Found a Better rho or an Isomorphism
	18.17.7 Deal with Potentially Better Value for rho
	18.17.8 Found a Better rho
	18.17.9 Deal With Isomorphism
	18.17.10 Backtrack After Isomorphism
	18.17.11 Prepare to Start from Backtrack
	18.17.12 Get Next Node for Testing
	18.17.13 Test Potential New Partition
	18.17.14 Found a Potential New Partitioning
	18.17.15 Backtrack
	18.17.16 Code with Unknown Purpose
	18.17.17 Prepare Information for Function Return After Successful Computation of rho
	18.17.18 Tidy Up Before Function Return
	18.17.19 UnorderedPartitionMakeDiscrete

	18.18 PartitionIsDiscrete
	18.19 PartitionSatisfiesLemma_2_25
	18.20 PartitionGetFirstCell
	18.21 CellGetMinNode
	18.22 PartitionColorVertex
	18.23 CtPartFill
	18.24 CtPartCopy
	18.25 CtPartInfinity
	18.26 PartitionCopy
	18.27 CellMakeEmpty
	18.28 GetUnorderedPartitionMcrNode
	18.29 UpdateCompareLayers
	18.30 CtPartCompare
	18.31 PartitionGetMcrAndFixSet
	18.32 PartitionGetTransposition
	18.33 TranspositionGetMcrAndFixSetAndUnorderedPartition
	18.34 UnorderedPartitionJoin
	18.35 GetUnorderedPartitionMcrNode
	18.36 nGetMcr2
	18.37 FixCanonEquivalenceInfo
	18.38 CompRanksOrd
	18.39 SortedEquInfoToRanks

	19 InChI Output Functions
	19.1 FillOutINChI
	19.2 SetConnectedComponentNumber
	19.3 SortAndPrintINChI
	19.4 CompINChINonTaut2
	19.5 CompINChITaut2
	19.6 CompINChI2
	19.7 CompareHillFormulasNoH
	19.8 CompareTautNonIsoPartOfINChI
	19.9 CompareInchiStereo
	19.10 OutputINChI2
	19.11 OutputINChI1
	19.12 inchi_ios_print

	20 Key Generation Functions
	20.1 GetStdINCHIKeyFromStdINCHI
	20.2 GetINCHIKeyFromINCHI
	20.3 AddMOLfileError
	20.4 GetCanonLengths

	21 Files and Functionality
	22 Glossary of Terms Used in InChI Software
	23 References

